Skip to main content

Main menu

  • Home
  • Articles
    • Newest Articles
    • Current Issue
    • Archive
    • Subject Collections
    • Special Collections
  • Reviews & Opinions
    • Editorials
    • Research News
    • Essays
    • Commentaries
    • Perspectives
    • Milestones in Physiology
    • Reviews
    • Viewpoints
  • Alerts
  • About
    • About JGP
    • History
    • Editors & Staff
    • Permissions & Licensing
    • Advertise
    • Contact Us
    • Privacy Policy
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Publication Fees
    • Author Services
  • Subscriptions
  • Rockefeller University Press
  • JCB
  • JEM
  • JGP
  • LSA

User menu

  • Log in

Search

  • Advanced search
JGP
  • Rockefeller University Press
  • JCB
  • JEM
  • JGP
  • LSA
  • Log in
JGP

Advanced Search

  • Home
  • Articles
    • Newest Articles
    • Current Issue
    • Archive
    • Subject Collections
    • Special Collections
  • Reviews & Opinions
    • Editorials
    • Research News
    • Essays
    • Commentaries
    • Perspectives
    • Milestones in Physiology
    • Reviews
    • Viewpoints
  • Alerts
  • About
    • About JGP
    • History
    • Editors & Staff
    • Permissions & Licensing
    • Advertise
    • Contact Us
    • Privacy Policy
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Publication Fees
    • Author Services
  • Subscriptions

You are here

jgp Home » 1996 Archive » 1 October » 108 (4): 277
Article

Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols.

D L Campbell, J S Stamler, H C Strauss
D L Campbell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J S Stamler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H C Strauss
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1085/jgp.108.4.277 | Published October 1, 1996
  • Article
  • Info
  • Metrics
  • Preview PDF
Loading

Abstract

The effects of NO-related activity and cellular thiol redox state on basal L-type calcium current, ICa,L, in ferret right ventricular myocytes were studied using the patch clamp technique. SIN-1, which generates both NO. and O2-, either inhibited or stimulated ICa,L. In the presence of superoxide dismutase only inhibition was seen. 8-Br-cGMP also inhibited ICa,L, suggesting that the NO inhibition is cGMP-dependent. On the other hand, S-nitrosothiols (RSNOs), which donate NO+, stimulated ICa,L. RSNO effects were not dependent upon cell permeability, modulation of SR Ca2+ release, activation of kinases, inhibition of phosphatases, or alterations in cGMP levels. Similar activation of ICa,L by thiol oxidants, and reversal by thiol reductants, identifies an allosteric thiol-containing "redox switch" on the L-type calcium channel subunit complex by which NO/O2- and NO+ transfer can exert effects opposite to those produced by NO. In sum, our results suggest that: (a) both indirect (cGMP-dependent) and direct (S-nitrosylation/oxidation) regulation of ventricular ICa,L, and (b) sarcolemma thiol redox state may be an important determinant of ICa,L activity.

© 1996 Rockefeller University Press
Previous articleNext article
Back to top
Download PDF
Citation Tools
Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols.
D L Campbell, J S Stamler, H C Strauss
The Journal of General Physiology Oct 1996, 108 (4) 277-293; DOI: 10.1085/jgp.108.4.277

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts
Sign In to Email Alerts with your Email Address

Email logo Twitter logo Facebook logo Mendeley logo Reddit logo CiteULike logo LinkedIn logo
The Journal of General Physiology: 151 (2)

Current Issue

February 4, 2019
Volume 151, No. 2

  • Table of Contents
  • All Issues

Jump To

  • Article
  • Info
  • Metrics
  • Preview PDF
 

ARTICLES

  • Current Issue
  • Newest Articles
  • Archive
  • Alerts
  • RSS feeds

FOR AUTHORS

  • Submit a Manuscript
  • Instructions for Authors

ABOUT

  • About JGP
  • Editors & Staff
  • Permissions & Licensing
  • Advertise
  • Feedback
  • Newsroom
  • Privacy Policy

CONNECT WITH JGP

  • Email
  • Facebook
  • Twitter
  • RSS
  • Instagram

Online ISSN: 1540-7748
Print ISSN: 0022-1295

Copyright © 2019 JGP by Rockefeller University Press