Skip to main content

Main menu

  • Home
  • Articles
    • Newest Articles
    • Current Issue
    • Archive
    • Subject Collections
    • Special Collections
  • Reviews & Opinions
    • Editorials
    • Research News
    • Essays
    • Commentaries
    • Perspectives
    • Milestones in Physiology
    • Reviews
    • Viewpoints
  • Alerts
  • About
    • About JGP
    • History
    • Editors & Staff
    • Permissions & Licensing
    • Advertise
    • Contact Us
    • Privacy Policy
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Publication Fees
    • Author Services
  • Subscriptions
  • Rockefeller University Press
  • JCB
  • JEM
  • JGP
  • LSA

User menu

  • Log in

Search

  • Advanced search
JGP
  • Rockefeller University Press
  • JCB
  • JEM
  • JGP
  • LSA
  • Log in
JGP

Advanced Search

  • Home
  • Articles
    • Newest Articles
    • Current Issue
    • Archive
    • Subject Collections
    • Special Collections
  • Reviews & Opinions
    • Editorials
    • Research News
    • Essays
    • Commentaries
    • Perspectives
    • Milestones in Physiology
    • Reviews
    • Viewpoints
  • Alerts
  • About
    • About JGP
    • History
    • Editors & Staff
    • Permissions & Licensing
    • Advertise
    • Contact Us
    • Privacy Policy
  • Submit
    • Submit a Manuscript
    • Instructions for Authors
    • Publication Fees
    • Author Services
  • Subscriptions

You are here

jgp Home » 1925 Archive » 20 March » 7 (4): 473
Article

FACTORS AFFECTING TRANSMISSION AND RECOVERY IN THE PASSIVE IRON NERVE MODEL

Ralph S. Lillie
Ralph S. Lillie
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1085/jgp.7.4.473 | Published March 20, 1925
  • Article
  • Info
  • Metrics
  • Preview PDF
Loading

Abstract

1. The speed of transmission of the activation wave along passive iron wires enclosed in glass tubes containing dilute (70 per cent) nitric acid increases with the conductivity (sectional area) of the column of electrolyte but at a slower rate. The speed is closely proportional to the square root of the conductivity

See PDF for Equation.

The reasons for this relationship are discussed and an explanation is proposed.

2. The recovery of transmissivity after the passage of an activation wave is gradual and follows a characteristic course. After an interval of partial or decremental transmission (having a high temperature coefficient and lasting several minutes at 20°), the wire recovers its power of transmitting an activation wave for an indefinite distance. In such a recovered wire the speed of transmission is at first slow and increases by degrees up to a maximum, the increase following a curve apparently of the type vt = v0 (1 – e_kt). The approximate time required to attain this maximum (corresponding to complete recovery) at the different temperatures is 15 to 20 minutes at 20°, 30 to 45 minutes at 15°, ca. 60 minutes at 10°, and 90 minutes or more at 5°.

3. The character of the curve of recovery (the curve relating speed of transmission to interval since previous activation) agrees with the assumption that the increase in speed depends on a progressive chemical change in the molecules forming the passivating film, this change involving the transformation of (relatively) nonreactive into reactive molecules and following the course of a monomolecular reaction.

4. The temperature coefficient of the speed of transmission (between 5° and 20°) is low, of the order Q10 = 1.3 to 1.6. That of the rate of recovery, on the contrary, is high (Q10 = ca. 3). The parallel to the conditions in nerve and other transmitting protoplasmic systems is pointed out and discussed.

5. Passive wires enclosed in acid-containing continuous and interrupted glass tubes immersed in a large volume of acid exhibit characteristic phenomena of distance action; under appropriate conditions the velocity of transmission of the activating influence between different areas may thus be greatly increased. Characteristic instances are cited and some possible physiological parallels are pointed out.

Footnotes

    • Accepted: 17 December 1924
© 1925 Rockefeller University Press
Previous articleNext article
Back to top
Download PDF
Citation Tools
FACTORS AFFECTING TRANSMISSION AND RECOVERY IN THE PASSIVE IRON NERVE MODEL
Ralph S. Lillie
The Journal of General Physiology Mar 1925, 7 (4) 473-507; DOI: 10.1085/jgp.7.4.473

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts
Sign In to Email Alerts with your Email Address

Email logo Twitter logo Facebook logo Mendeley logo Reddit logo CiteULike logo LinkedIn logo
The Journal of General Physiology: 151 (2)

Current Issue

February 4, 2019
Volume 151, No. 2

  • Table of Contents
  • All Issues

Jump To

  • Article
  • Info
  • Metrics
  • Preview PDF
 

ARTICLES

  • Current Issue
  • Newest Articles
  • Archive
  • Alerts
  • RSS feeds

FOR AUTHORS

  • Submit a Manuscript
  • Instructions for Authors

ABOUT

  • About JGP
  • Editors & Staff
  • Permissions & Licensing
  • Advertise
  • Feedback
  • Newsroom
  • Privacy Policy

CONNECT WITH JGP

  • Email
  • Facebook
  • Twitter
  • RSS
  • Instagram

Online ISSN: 1540-7748
Print ISSN: 0022-1295

Copyright © 2019 JGP by Rockefeller University Press