Inactivation of Gating Currents of L-Type Calcium Channels

Specific Role of the \(\alpha_2\delta \) Subunit

Roman Shirokov, Gonzalo Ferreira, Jianxun Yi, and Eduardo Ríos

From the Department of Molecular Biophysics and Physiology, Rush University School of Medicine, Chicago, Illinois 60612

Abstract In studies of gating currents of rabbit cardiac Ca channels expressed as \(\alpha_{1C}/\beta_2 \) or \(\alpha_{1C}/\beta_2/\alpha_2\delta \) subunit combinations in tsA201 cells, we found that long-lasting depolarization shifted the distribution of mobile charge to very negative potentials. The phenomenon has been termed charge interconversion in native skeletal muscle (Brum, G., and E. Ríos. 1987. J. Physiol. (Camb.). 387:489–517) and cardiac Ca channels (Shirokov, R., R. Levis, N. Shirokova, and E. Ríos. 1992. J. Gen. Physiol. 99:863–895). Charge 1 (voltage of half-maximal transfer, \(V_{1/2} = 0 \) mV) gates noninactivated channels, while charge 2 (\(V_{1/2} = -90 \) mV) is generated in inactivated channels. In \(\alpha_{1C}/\beta_2 \) cells, the available charge 1 decreased upon inactivating depolarization with a time constant \(\tau = 8 \) s, while the available charge 2 decreased upon recovery from inactivation (at \(-200 \) mV) with \(\tau = 0.3 \) s. These processes therefore are much slower than charge movement, which takes <50 ms. This separation between the time scale of measurable charge movement and that of changes in their availability, which was even wider in the presence of \(\alpha_2\delta \), implies that charges 1 and 2 originate from separate channel modes. Because clear modal separation characterizes slow (C-type) inactivation of Na and K channels, this observation establishes the nature of voltage-dependent inactivation of L-type Ca channels as slow or C-type. The presence of the \(\alpha_2\delta \) subunit did not change the \(V_{1/2} \) of charge 2, but sped up the reduction of charge 1 upon inactivation at 40 mV (to \(\tau = 2 \) s), while slowing the reduction of charge 2 upon recovery (\(\tau = 2 \) s). The observations were well simulated with a model that describes activation as continuous electrodiffusion (Levitt, D. 1989. Biophys. J. 55:489–498) and inactivation as discrete modal change. The effects of \(\alpha_2\delta \) are reproduced assuming that the subunit lowers the free energy of the inactivated mode.

Key words: cardiac muscle • heterologous expression • continuum model of gating • charge interconversion • charge immobilization

Introduction

Voltage-dependent inactivation of Ca channels is an important mechanism of regulation of \(\text{Ca}^{2+} \) entry during repetitive stimulation. Its relatively slow kinetics allow for a long-term, direct control of channel availability by transmembrane electric potential. Although inactivation is thought to be a property of the \(\alpha \) subunit, fine tuning of its voltage sensitivity depends on interactions with auxiliary subunits and with other proteins.

In spite of a resemblance between voltage-dependent inactivation of Ca channels and the so-called slow or C-type inactivation found in the whole superfamiley of voltage-gated channels, the structural underpinnings of this process have yet to be identified in Ca channels. Slow inactivation may be characterized by its relatively slow kinetics (\(\tau = 1 \) s), dependence on extracellular cations, and involvement of the extracellular portions of pore forming S5-S6 linkers (Brum et al., 1988; Hoshi et al., 1990; López-Barneo et al., 1993; Yellen et al., 1994; Balser et al., 1996; Townsend and Horn, 1997). In addition, slow inactivation is believed to result in the appearance of a specific intramembranous charge movement (charge 2; Brum and Ríos, 1987) generated by conformational changes in inactivated channels (Bezanilla et al., 1982; Brum and Ríos, 1987; Shirokov et al., 1992; Olice et al., 1997). Slow rates of inactivation and recovery are essential for the operational separation of two types of charge. Charge 2 is well defined and separate from charge 1 (the charge that moves in noninactivated or primed channels) because its observable movement proceeds to completion much sooner than inactivation onset or recovery.

In contrast, fast inactivation of Na channels and N-type inactivation of Shaker K channels (ball and chain type; Armstrong and Bezanilla, 1977; Vassilev et al., 1988; Zagotta et al., 1990) recovers rapidly at negative potentials, approximately simultaneously with the inward movement of the intramembranous charge. Because recovery may proceed at rates comparable with that of measurable charge movement, there is no well-defined mode of charge movement that can be ascribed to this...
type of inactivation. The inward charge movement ob-
served at large negative potentials after an inactivating
depolarization occurs in channels as they recover from
inactivation (repriming).

Apparently, a ball and chain–type inactivation is not
present in Ca channels. It has been shown for several
types of Ca channels that the faster component of ionic
current decay is driven by ionic current itself. Because
neither changes in intracellular calcium (Hadley and
Lederer, 1992) nor the ion flow through cardiac chan-
nels influence inactivation of gating currents, Shirokov
et al. (1993) concluded that Ca\(^{2+}\)-dependent inactiva-
tion is a separate process, linked to gating currents only
indirectly, through channel opening.

We have shown previously that decay of Ba\(^{2+}\) current
through L-type Ca channels constituted by \(\alpha\) and \(\beta\) subunits occurs in two phases. The slow phase (\(\tau \approx 8 \text{ s}\))
is associated with voltage-dependent inactivation and is
cotemporal with the reduction of available gating charge
upon inactivation at positive voltages (Ferreira et al.,
1997). We now address in quantitative detail the inactiva-
tion of intramembranous charge movement in heterolo-
gously expressed \(\alpha\) channels. Because cardiac Ca chan-
nels transiently express at high density in the tsA201 hu-
man embryonic kidney cell line, we were able to measure
intramembrane charge movements in these channels
without using pulse protocols for subtraction of control
records. This allowed us to study in detail the effects of
conditioning voltage on the movement of voltage sen-
sors, with or without the \(\alpha \beta\) subunit, and develop a com-
 pact biophysical model that describes voltage-dependent
inactivation well. The rate of the slow phase of Ba\(^{2+}\)
current decay is three- to fivefold greater in the pres-
ence of the \(\alpha \beta\) subunit (Ferreira et al., 1997) and is
equal to that in native channels. The biophysical model
described here reproduces in a parsimonious manner
the effects of the \(\alpha \beta\) subunit.

Methods

Experiments were performed in tsA201 cells grown in DME me-
dium (Sigma Chemical Co., St. Louis, MO) supplemented with
10% FBS (BioWhittaker, Walkersville, MD), 100 U/ml penicillin,
and 0.1 mg/ml streptomycin (Sigma Chemical Co.) in 5% CO\(_2\).
Rabbit \(\alpha\) and \(\beta\) cDNAs were subcloned in pCR3,
pMT2, and pCMV plasmid vectors, respectively. High purity
mRNA (\(A_d / A_{260} \approx 1.90\)) large-scale plasmid preparations were
obtained using standard protocols (Qiagen Inc., Chatsworth, CA).
Transfections were carried out with 30 \(\mu\)g of each expression
plasmid in two combinations (\(\alpha_d \beta_a \), \(\alpha_d \beta_c \), and \(\alpha_d \beta_c \)) on
100-mm Petri dishes using a calcium phosphate precipitation
method (Chien et al., 1995). Electrophysiological recordings
were made within 24–48 h after transfection on round nonclus-
tered cells. No sizable ionic or gating currents were observed in
tsa201 cells in the absence of transfection. After transfection,
the fraction of cells selected and patched that had Ca\(^{2+}\) currents
was \(\approx 70\%\).

Records were obtained by a standard whole-cell patch clamp
procedure using an Axopatch 200A amplifier (Axon Instruments,
Inc., Foster City, CA) and a 16-bit A/D–D/A converter card (HSDAS
16; Analogic Corp., Peabody, MA) on a PC computer. Patch elec-
trodes were pulled from Corning 7052 glass (Warner Instru-
mants, Hamden, CT) and had resistances of 1.0–1.5 M\(\Omega\).

The pipette solution contained (mM): 150 CsOH, 110 glutamate,
20 HCl, 10 HEPES, 5 MgATP, and 10 EGTA, pH 7.6. External
recording solutions contained 100 TEA-Cl, 10 Tris, and
10 Ca\(^{2+}\), pH 7.2. To record intramembranous charge move-
ment, the bath solution was replaced with one that included 15
\(\mu\)M of GdCl\(_3\). All solutions were adjusted to 300–320 mosmol/Kg.
All experiments were carried out at room temperature (\(\sim 20^\circ\text{C}\)).

Whole-cell capacitance was \(\approx 15\) pF. The time constant of
membrane charging typically did not exceed 100 \(\mu\)s. Series resist-
ance, calculated from the capacitive transient, was below 10 M\(\Omega\).
The single time constant capacitance compensation circuitry of
the Axopatch 200A amplifier was routinely used to offset 95–98% of
the symmetric capacitive transient. Parameters of the compen-
sation circuitry were set with a 10-mV pulse from the holding poten-
tial of –90 mV.

For a 200-mV pulse spanning most of the useful voltage range,
the residual linear transient corresponded to a transfer of \(<\text{10} \text{ fC}/\text{pF}\) charge, while maximal intramembranous charge trans-
fer from the expressed channels was \(\sim\text{100} \text{ fC}/\text{pF}\). With this com-
bination of a relatively fast voltage clamp, high level of expres-
sion, and effective linear capacitance compensation, we were
able to record asymmetric capacitive transients directly, without
acquiring control linear transients for further subtraction.

Gating currents were recorded at 1 kHz bandwidth and sam-
ped at 10 kHz. During prolonged pulses, the sampling rate was
switched to between 0.05 and 2 kHz. To let the channels recover
from inactivation, sets of conditioning and test pulses were sepa-
rated by 30 s or longer. Charge transfer was calculated as the time
integral of the current transient after subtraction of a steady cur-
rent, which was determined as a 10-ms average, 40 ms after the
beginning of the pulse.

Fig. 1 illustrates a typical experiment. The pulse protocol is
shown at top. A conditioning pulse of 20 s at 40 mV was applied
before each test pulse. Conditioning and test pulses were sepa-
rated by an interval at \(-\text{20} \text{ mV}\). Current traces were obtained
with different test pulse voltages (V). The charge transferred by
the ON transients (\(\bullet\)) and the steady current during the test
pulse (\(\square\)) are plotted against voltage in Fig. 1 B. The steady cur-
rent-voltage relationship was linear in the range from \(-\text{150} \text{ to } \text{50} \text{ mV}\), with steepness corresponding to an input resistance of \(\sim\text{5} \text{ GΩ}\). The steady current at 0 mV was \(\sim\text{3} \text{ pA}\). The charge trans-
fer–voltage relationship was clearly sigmoidal, saturating at ex-
treme voltages. This demonstrates that the contribution of the
linear capacitance was small, and validates the evaluation of
charge transfer without subtraction of control currents.

Data are presented as averages \(\pm\) SEM. Significance of differ-
ences between mean values was evaluated by Student's \(t\) test. Volt-
age distributions and time courses were fitted, respectively, by
single Boltzmann and single exponential functions using a non-
linear least-squares routine included in the SigmaPlot software
package (SPSS Inc., Chicago, IL).

Results

Steady State Distributions of Charge Movement in Primed and
Inactivated Channels

To study effects of conditioning depolarization on the
voltage dependence of intramembranous charge move-
ment, we used a double pulse protocol illustrated in
Fig. 2. First, gating currents were recorded in polarized
α1/β cells held at −90 mV (Fig. 2A). The test pulse was applied from a 50-ms long interpulse at −60 mV. Then the same protocol was applied again but with a 20-s long conditioning pulse to 40 mV preceding each interpulse (Fig. 2B). Current traces are shown on both panels for a set of test voltages starting at −190 mV in 40-mV increments. There was little charge movement current at voltages more negative than −70 mV in polarized cells, but the conditioning produced a substantial increase of currents at these negative voltages. The charge transferred during the ON transient for the same cell is plotted against membrane potential in Fig. 2C. When the cell was held at −90 mV, and consequently the channels were available for opening, most of the charge moved during pulses positive to −60 mV (Fig. 2, ●). In inactivated channels, by contrast, about half of the charge moved in pulses below −60 mV (Fig. 2, ○). Curves are fits by a shifted Boltzmann function

\[Q(V) = Q_0 + Q_{\text{MAX}} \left(1 + \exp \left[\frac{(V - V_{1/2})}{K} \right] \right) \]

where \(Q_0 \), a negative quantity, is the limit of charge transfer as \(V \) tends to −\(\infty \), \(Q_{\text{MAX}} \) is the difference between the maximal positive transfer and \(Q_0 \), \(V_{1/2} \) is the voltage of half-maximal transfer, or transition potential, and \(K \) is a steepness constant. The measurable charge movement during the interpulse had ended by the end of the interpulse. Therefore, the changes in charge distribution in inactivated channels were long-lived compared with the time scale of the measurable charge movement.

Addition of the αδ subunit increased the effect of depolarization on charge transfer. About two thirds of the charge was mobile below −60 mV in inactivated α1/β/αδ channels (Fig. 3). To compare the effects of conditioning in α1/β and α1/β/αδ cells, we averaged charge distributions obtained in different cells, normalized as follows. First, Eq. 1 was fitted to individual \(Q(V) \) data, and the fitted shift \(Q_0 \) was subtracted from \(Q(V) \). Data shifted in this way (referred to as “charge distributions”) can be compared without reference to starting
voltage. For averaging, the charge distribution was normalized to the individual Q_{MAX} determined in the inactivated cell.1 Averages of normalized distributions are shown in Fig. 4. The curves are Boltzmann fits with parameters listed in Table I. In polarized cells (Fig. 4, ○), $V_{1/2}$ was close to 0 mV, but some 12 mV more negative in α_1/β (-8.4 mV) than in $\alpha_1/\beta/\alpha_2\beta$ cells (3.9 mV). One reason for this small difference is that gating charge in the primed cells is systematically underestimated at voltages positive to 70 mV (and $V_{1/2}$ is consequently undervalued), due to the presence of nonspecific outward current. With the $\alpha_2\beta$ subunit present, maximal charge movement increases approximately twofold (Bangalore et al., 1996), which makes the relative error smaller and $V_{1/2}$ greater.

When charge transfers were measured after the inactivating pulse (Fig. 4, ○), $V_{1/2}$ was shifted by -57 mV in α_1/β cells and by -81 mV in $\alpha_1/\beta/\alpha_2\beta$ cells. The difference in shifts was statistically significant ($P < 0.05$). As shown in Table I, inactivation induced only minor changes in steepness and total mobile charge. As was the case for the distribution of charge movement in native cardiomyocytes (Shirokov et al., 1993), the effect of inactivation is best described, with either subunit composition, as a simple shift in the transition potential.

The greater shift in the presence of the $\alpha_2\beta$ subunit could be the result of a greater extent of inactivation during the conditioning pulse to 40 mV, a slower recov-

1For example, charge transfer (μC/μF, V in mV) in the cell illustrated in Fig. 3 is fitted by $Q(V) = -2.5 + 59.6/[1 + \exp[(V - 6.8)/25.0]]$ in the nonconditioned case, and $Q(V) = -38.9 + 55.0/[1 + \exp[(V + 85.0)/31.8]]$ after conditioning. The normalized distributions in the same cell are, respectively: $Q'(V) = 1.08/[1 + \exp((V - 6.8)/25.0)]$, and $Q'(V) = 1.00/[1 + \exp[(V + 85.0)/31.8]]$.
ery from inactivation during the interpulse at −60 mV, or both. To test these possibilities, we studied voltage distributions of mobile charge after an inactivating pulse, varying the interpulse voltage.

In the extreme case illustrated in Fig. 5, there was no interpulse. When negative-going test pulses where applied after a 50-ms long step to 40 mV, as shown in Fig. 5A for an α₁/β/α₂δ cell, charge transfer was nearly maximal at −100 mV (Fig. 5 C, ●). After a 20-s long conditioning pulse, charge transfer at −100 mV was
only about half-maximal (Fig. 5, C, □). Fig. 5 D plots the corresponding distributions in α₁/β/α₂δ cells. For comparison, the dashed curves are the best fits in α₁/β cells. Addition of the α₂δ subunit did not change significantly the transition potentials in noninactivated or inactivated channels. The only significant difference was that charge distribution of inactivated channels was somewhat steeper in the presence of the α₂δ subunit.

The experiments in Fig. 5 indicate that the difference in distributions after conditioning demonstrated in Fig. 4 was mostly due to a faster recovery of α₁/β cells during the interpulse at −60 mV. In the absence of an interpulse allowing recovery, the difference induced by inactivation was about the same with both subunit compositions.

When test pulses were applied from an interpulse

<table>
<thead>
<tr>
<th>Composition</th>
<th>Interpulse voltage (mV)</th>
<th>n</th>
<th>V₁/₂ (mV)</th>
<th>K (mV)</th>
<th>QMAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>α₁/β</td>
<td>−60</td>
<td>14</td>
<td>−8.4 ± 2.0</td>
<td>29.6 ± 1.5</td>
<td>0.95 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>+40</td>
<td>5</td>
<td>−20.3 ± 3.3</td>
<td>39.2 ± 3.4</td>
<td>0.93 ± 0.05</td>
</tr>
<tr>
<td></td>
<td>−150</td>
<td>5</td>
<td>−1.5 ± 4.8</td>
<td>31.6 ± 3.7</td>
<td>1.03 ± 0.06</td>
</tr>
<tr>
<td>α₁/β/α₂δ</td>
<td>−60</td>
<td>9</td>
<td>3.9 ± 1.2</td>
<td>27.9 ± 0.8</td>
<td>1.02 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>+40</td>
<td>5</td>
<td>−21.8 ± 2.4</td>
<td>38.9 ± 2.6</td>
<td>0.96 ± 0.04</td>
</tr>
<tr>
<td></td>
<td>−150</td>
<td>5</td>
<td>2.9 ± 1.5</td>
<td>27.6 ± 1.3</td>
<td>0.93 ± 0.02</td>
</tr>
</tbody>
</table>

Parameters of single Boltzmann function \(Q(V) = Q_{\text{MAX}}/(1 + \exp(V - V_{1/2})/K) \) fitted to voltage dependencies of intramembrane charge movement in tsA201 cells transfected with α₁/β and α₁/β/α₂δ combinations of L-type Ca²⁺ channel subunits. The distributions were determined from different interpulse voltages as illustrated by pulse protocols on Figs. 2, 3, 5, and 6. The corresponding functions are plotted on Figs. 4–6.

Figure 5. Effect of conditioning on charge distributions obtained with pulses from 40 mV. (A) Gating currents elicited in an α₁/β cell. Shown are the currents elicited with test pulses to voltages ranging from −170 to 90 mV in 40-mV intervals, starting from a 50-ms long interpulse at 40 mV. (B) Gating currents in the same cell, elicited by test pulses from a 20-s long conditioning at 40 mV. (C) Average charge distributions in α₁/β cells (\(n = 5 \)), calculated from charge transfers obtained as illustrated in A and B. (D) Charge distribution after a 50-ms long prepulse to 40 mV. (□) Charge distribution after a 20-s long conditioning. Solid lines are Boltzmann fits through the data. (D) Corresponding average charge distributions in α₁/β/α₂δ cells (\(n = 5 \)). Solid lines are Boltzmann fits through the data. Dashed lines copy the fits (shown in C) to average charge distributions without the α₂δ subunit. The transition potentials of the distributions obtained after 20-s long conditioning are not significantly different in α₁/β/α₂δ and α₁/β cells (Table I).
level of -150 mV, conditioning again led to a negative shift of the charge distribution, now manifested as an increase of gating currents recorded at intermediate voltages, as shown for an $\alpha_1/\beta/\alpha_2\delta$ cell in Fig. 6, A and B. As shown in Fig. 6 D, the charge distribution in primed cells was affected little by the presence of the $\alpha_2\delta$ subunit (Fig. 6, C). In conditioned $\alpha_1/\beta/\alpha_2\delta$ cells, however, the charge distribution was shifted to more negative voltages than in α_1/β cells, as a consequence of a slower recovery at -150 mV in the presence of the $\alpha_2\delta$ subunit. Again, the charge movement currents ended earlier than the interpulse, indicating that even at -150 mV the voltage shift in distribution of mobile charge induced by inactivation recovers much more slowly than the measurable return of the mobile charge.

These experiments demonstrate that in inactivated Ca channels all the charge remains mobile, albeit at voltages more negative than those of activation gating. The concept of modal conversion applicable to slow inactivation of native Na channels (Bezanilla et al., 1982), recombinant Shaker K channels (Olcese et al., 1997), and voltage-dependent inactivation of native Ca channels of skeletal (Brum and Ríos, 1987) and cardiac muscle (Shirokov et al., 1992) is seen to apply to recombinant Ca channels. Gating transitions within the primed mode of the channel produce charge 1 movements, while transitions within the inactivated mode produce sterile charge 2.

The present results suggest that the $\alpha_2\delta$ subunit has little direct effect on charge 1 and charge 2 movements. Apparently, its main effects are on the kinetics of charge 1–charge 2 interconversion. We confirmed this impression with the experiments described below.

Kinetics of Inactivation of Charge Movement and Effects of the $\alpha_2\delta$ Subunit

Time-dependent inactivation of Ba$^{2+}$ current through L-type Ca channels has two kinetic phases. In the absence of the $\alpha_2\delta$ subunit, prolonged depolarization reduces gating charge mobile above -60 mV with a time course parallel to the slower exponential component of Ba$^{2+}$ current decay (Ferreira et al., 1997). The time constant of this component in α_1/β cells is ~ 8 s at 20 mV, while in $\alpha_1/\beta/\alpha_2\delta$ and in native cells it is ~ 2 s. In the experiment illustrated in Fig. 7, we investigated the
effect of the α_d subunit on the onset kinetics of charge reduction. Charge movement was recorded during OFF transients from depolarizations of different duration (protocol at top). In α_1/β cells (Fig. 7 A), the OFF gating currents were progressively smaller for increasing test pulse durations up to 20 s. In cells with all three subunits (Fig. 7 B), reduction of the OFF transient saturated after 6 s of depolarization. To average and compare effects in different cells, values of charge moved after the long depolarizations were normalized to the value obtained from the transient after a 45-ms pulse to the same voltage. The averages are plotted in Fig. 7, C and D. Different symbols correspond to different pulse voltages. Reduction of the mobile charge was about three times faster in $\alpha_1/\beta/\alpha_d$ cells for all voltages. The time constant of the reduction of gating charge at 40 mV in $\alpha_1/\beta/\alpha_d$ cells was \sim1.7 s, similar to that for the slow phase of Ba$^{2+}$ current decay in these cells and in native cardiomyocytes.

We studied the effect of α_d on recovery from inactivation applying a double pulse protocol often used with ionic currents. The experiment is illustrated in Fig. 8. After conditioning, the membrane was kept at the interpulse voltage for a variable time (T_{ip}), and then a test pulse to 50 mV was applied to assess charge movement. Reference test currents (Fig. 8, thick traces) were recorded without conditioning. Gating currents elicited by test pulses from -60 mV took much longer to recover in $\alpha_1/\beta/\alpha_d$ cells (Fig. 8 B) than in α_1/β cells (Fig. 8 A). As shown in Fig. 8, C and D, recovery from inactivation was substantially delayed by the α_d subunit at every interpulse voltage tested.

In studies of recovery at very negative voltages, it was simpler to record the charge movement of inactivated channels (charge 2), which occurs at potentials negative to -50 mV. For this purpose, a test pulse to -50 mV was applied from an interpulse at more negative voltages (Fig. 9). Because inactivation involves a negative shift in the voltage dependence of charge movement, in the range negative to -50 mV, recovery is associated with a reduction in charge transfer. Given the conservation of total charge (Figs. 4–6), this should be accompanied by an equivalent increase of charge mobile in noninactivated channels (at potentials positive to -50 mV).

Independently of the presence of the α_d subunit, conditioning caused an approximately twofold increase of charge transfer between -150 and -50 mV (Fig. 9, A and B), if recorded 50 ms after conditioning. Very little of this increase remained after 1 s at -150 mV in α_1/β cells, but \sim50% persisted in $\alpha_1/\beta/\alpha_d$ cells. Fig. 9, C and D, plot the increase of charge mobile between the interpulse voltage and -50 mV, normalized to the
The main finding of this study is that voltage-dependent inactivation of heterologously expressed cardiac Ca channels is associated with a large negative shift in the voltage dependence of their charge movement. The intramembranous charge movement in inactivated α1/β channels has a transition potential of \(\sim -90 \) mV, which is the same as in native L-type Ca channels (Brum and Ríos, 1987; Shirokov et al., 1992). The charge remains mobile at these voltages until channels recover from inactivation, a first order process with a time constant of \(\sim 300 \) ms. Because the time scale of charge movement in inactivated α1/β channels (\(\tau \approx 15 \) ms) is much faster than recovery from inactivation, the expressed channels exhibit a separate inactivated mode, and the term charge 2 can be applied to the charge mobile at negative voltages in inactivated channels. With \(\alpha_{1/2} \gamma/\alpha_{2d} \) channels, the modal separation is even more clear cut.

We showed previously that the onset of inactivation of gating currents in \(\alpha_1/\beta \) cells is parallel to a slow phase of Ba\(^{2+} \) current decay (\(\tau \approx 8 \) s), and that addition of the \(\alpha_2d \) subunit increases the slow rate of ionic current decay, making it similar to that in cardiac cells.
Inactivation of Ca Channels

(τ = 2 s; Ferreira et al., 1997). In agreement with these earlier observations, we now find a time constant of ~2 s for the reduction of gating currents upon inactivation in cells expressing all three subunits (Fig. 7). Working with native cells at room temperature, we estimated the onset τ of charge interconversion at 0.6 s (Shirokov et al., 1993). This estimate may be at fault because of the unavoidable contribution of Na channels to the native gating currents. A discrepancy in the same direction exists for the time course of recovery from inactivation of gating charge (charge 1) in native cells. We reported a time constant of 200 ms for this process (Shirokov et al., 1992), while in the present measurements with expressed channels containing the αδ subunit τ = 1.5 s (Fig. 9). Again, and for the same reasons, the present measurements must be considered more reliable. Interestingly, in native skeletal muscle, recovery of charge 1 is much slower (τ = 3 s; Brum and Ríos, 1987). The discrepancy in results in native cells could reflect structural differences between the two channels. It could also reflect a better determination, given the vast predominance of dihydropyridine receptors over other sources of intramembranous charge movement in skeletal muscle.

Biophysical Effects of the αδ Subunit

The present results demonstrate that the αδ subunit promotes inactivation of gating currents in cardiac L-type Ca channels. We found that the αδ subunit made the onset of inactivation of intramembrane charge movement three to four times faster, and the recovery from inactivation about five times slower. On the other hand, inactivation of gating currents in L-type Ca channels was much slower than activation gating, even in the presence of the αδ subunit (τ ≈ 2 s). It is therefore unlikely that the increased rate of inactivation results from primary changes in activation.

In spite of profound effects of the αδ subunit on inactivation kinetics, the voltage dependence of charge movement in primed and inactivated channels was not significantly changed. In agreement with previous findings (Singer et al., 1991; Welling et al., 1993; Shistik et al., 1995; Bangalore et al., 1996), we found little effect of the αδ subunit on voltage dependence of activation of ionic currents on α1/β cells (data not shown). In contrast, Felix et al. (1997) reported that the αδ subunit, added to the α3C in the absence of the β subunit,
shifted the activation of ionic currents in tsA201 cells by \(\sim -10 \) mV. In *Xenopus* oocytes, coexpression of \(\alpha_\delta \) and \(\alpha_1 \) subunits increased single channel open probability (Shistik et al., 1995), while in HEK 293 cells addition of \(\alpha_\delta \) to \(\alpha_1 \) and \(\beta \) subunits speeded up activation and deactivation (Bangalore et al., 1996).

As shown previously (reviewed by Gurnett and Campbell, 1996), the \(\alpha_\delta \) subunit shifts by \(\sim -10 \) mV the steady state inactivation curves of recombinant Ca channels. In light of these observations, our finding that the charge distributions in inactivated channels are unaffected by the \(\alpha_\delta \) subunit may seem surprising. This and other aspects, however, may be accounted for with biophysical models of voltage-dependent inactivation.

Inactivation of gating currents in Ca channels has been represented by a minimal four state diagram (Scheme I). In it, the “horizontal” transitions are fast and voltage dependent, while (voltage-independent) “vertical” transitions are much slower, which qualifies the pairs of states, C, O, and \(\star \), I, as separate modes that account, respectively, for charge 1 and charge 2. The model is “allosteric”: inactivation and activation occur at separate sites, as the movement of separate gates that influence each other but move individually.

\[
\begin{align*}
\text{Charge 2} & : \quad \star \leftrightarrow I \\
\text{Charge 1} & : \quad C \leftrightarrow O
\end{align*}
\]

(Scheme I)

This model already has most of the observed properties, and accommodates the effect of \(\alpha_\delta \), which could simply be represented by an equal reduction in the free energy of states I and I* and a decrease in the energy barrier between O and I. It is, however, too oversimplified, failing to account for charge movement between and inactivation from closed states.

\[
\begin{align*}
\text{Charge 2} & : \quad \star \leftrightarrow I \\
\text{Charge 1} & : \quad C \leftrightarrow C \leftrightarrow C \leftrightarrow O
\end{align*}
\]

(Scheme II)

Scheme II represents a generalization of the allosteric model (Marks and Jones, 1992; Kuo and Bean 1994; Olcese et al., 1997), in which activation gating is represented as a multi-step reaction, and inactivation is likely to occur from closed states.

Scheme II also features charge 1 and charge 2 modes, an aspect used recently by Olcese et al. (1997) to represent similar observations on gating currents of *Shaker* K channels. However, it has many parameters that cannot be constrained, especially the number of closed states. For this reason, we generalized these models by incorporating continuum activation gating (Millhauser et al., 1988; Lauger, 1988) in a version of Levitt (1989). This simplified the kinetic scheme, reduced the number of parameters, and gave a more intuitive view of the gating process.

The model equations are presented in detail in the appendix. Inactivation is described as a voltage-independent reaction, of rate constants \(k_P \) and \(k_I \), between two modes of the channel: P (primed) and I (inactivated). The gating process associated with intramembrane charge movement is represented by a conformational movement along a reaction coordinate \(x \), driven by the electric field (Scheme III). Because there are no free energy barriers, the movement is continuous, akin to diffusion. The generalized reaction coordinate projects to one dimension the set of conformations accessible to the channel. A given value of the coordinate characterizes all conformations that take the same amount of energy from the electric field.

\[
\begin{align*}
\text{I(X)} & : \quad k_i(X) \uparrow \quad k_p(X) \\
\text{P(X)} & : \quad 0 \quad x \quad 1
\end{align*}
\]

(Scheme III)

The state of the ensemble of channels is described by two probability density functions, \(P(x) \) and \(I(x) \). Evolution of these functions is determined by diffusion reaction within the free energy profiles \(U_P(x) \) and \(U_I(x) \), which have chemical and electrical additive components. As stated above, at any given transmembrane voltage the electrical energy term will vary linearly with \(x \). An additional assumption, primarily made for simplicity, is that the chemical free energy also depends linearly on \(x \). Therefore, the joint dependence of \(U_P \) (or \(U_I \)) on \(x \) and V is represented by ruled surfaces (hyperboloids), as in Fig. 10, where the parameters are chosen to simulate data in the presence of \(\alpha_\delta \).

To reproduce the tendency to inactivation at positive and recovery at negative voltages, \(U_P(x) \) and \(U_I(x) \) must cross, so that \(P \) is favored at the values of \(x \) near 0, which are populated at the resting potential, and the
brane voltage V and conformational coordinate value used to simulate the presence of (the value of appendix given by Eq. 3 (equally probable (intersection of the planes $U_P(x)$ and $U_I(x)$ during a pulse from x to 0 mV). The initial conditions $P(x,0)$ and $I(x,0)$ were calculated as the equilibrium distributions at 100 mV. The voltage was changed to 0 mV with exponential time course ($\tau_m = 0.2$ ms). The system evolved with two widely separated time scales, one associated with movements along x and the other with the inactivation transition. The fast process is illustrated in Fig. 11, top. A and B plot $P(x,t)$ and $I(x,t)$ during the first 5 ms of the voltage step. Both $P(x,t)$ and $I(x,t)$ redistribute towards $x = 1$, reaching a quasi stationary situation, and generating measurable charge movement associated with diffusion along x (Fig. 11 C). After the quasi steady state is reached, probability densities continue to change at a slow rate determined by the inactivation reaction. Fig. 11, bottom, illustrates this slow process. The marked complementary changes in total occupancy of modes P and I (Fig. 11 F) are accompanied by additional diffusion along x. The resulting charge movements are undetectable because of their slow rate, limited by the inactivation reaction. This additional redistribution of charge can be estimated as the difference between steady state charge transfer, calculated from the equilibrium distributions (P_e and I_e), and charge transfer determined by numerical integration of the simulated current, as if it were an experimental record.

Fig. 12 illustrates the comparison. Gating currents simulated with pulses from -200 mV are shown in Fig. 12 A, left. The areas under ON transients are shown in Fig. 12 B. The recordable charge transfer for steps from -200 mV occurs at more positive voltages than the equilibrium distribution of charge $Q_e(V)$ (Fig. 12, curve). The vertical difference between the curve and the symbols corresponds to the additional transfer that occurs slowly as channels inactivate.

Similarly, when pulses are applied from 200 mV, charge mobile in the fast time domain corresponds to redistribution of channels in mode I along the x axis, and the charge transfer (Fig. 12 B, ○) occurs at more negative voltages. Corresponding intramembrane charge movement currents are shown in Fig. 12 A, right.

The steepness of the Boltzmann fits to the simulated charge transfer was ~ 25 mV in both primed and fully inactivated channels, corresponding to the transfer of one elementary charge in a single step transition. With the continuum model, the maximal charge transfer had to be set to three elementary charges to simulate such shallow distributions. Interestingly, model-independent estimates of maximal unitary gating charge from gating current noise of Na and K channels provided similar values. 2.4 elementary charges were required assuming that the gating current noise is produced by a number of independent identical particles, which during activation undergo a single irreversible transition (Conti and Stühmer, 1989; Sigg et al., 1994).

The continuum model therefore reconciles estimates of elementary charge from microscopic and macroscopic gating current measurements, provided that the macroscopic charge movement is generated by particles with approximately three elementary charges moving independently and with the same half-activation potential. Because 8–12 elementary charges transfer during channel activation, ~ 4 such independent particles would be required for channel opening. This would be the case, for example, if the movement of individual S_4
segments occurred independently and over the same voltage range, and if all four segments had to move to cause activation.

Charge distributions of squid axon Na, skeletal muscle Ca, and Shaker K channels are less steep after moderate inactivation (Bezanilla et al., 1982; Brum and Ríos, 1987; Olcese et al., 1997). The observation also applied for moderately inactivated cardiac Ca channels in the present work (data not shown). Model simulations of this condition are illustrated in Fig. 12 C. The thick curves are simulated charge distributions in primed and inactivated channels (spline curves through Fig. 12 B, O and ●). The dark gray curve simulates with the continuum model the measurable charge transfer upon application of negative-going pulses after a 1-s conditioning at 200 mV. In contrast, the four-state model of Scheme I2 generated the two-sigmoidal distribution plotted in thin trace, which is close to a linear combination of the fully primed and fully inactivated distributions. Such sharp separation of sigmoidal components was never observed experimentally. Even though the two-modal distributions of charge could be isolated experimentally in the presence of $\alpha_2\delta$, the distribution in partially inactivated conditions was not a linear combination of the modal distributions. This is well reproduced by the continuum model.

Simulation of the Effect of the $\alpha_2\delta$ Subunit

To model the effects of the $\alpha_2\delta$ subunit on voltage-dependent inactivation, we had only to assume that the subunit stabilizes the inactivated mode I. We specifically assumed that it makes the energy difference between I and P more negative at all values of x. Because of the linearity of $U_I(x,V)$, this is equivalent to a decrease in χ, the x value of half inactivation. While inactivation of α_1/β channels was simulated with $\chi = 0.8$, $\alpha_1/\beta/\alpha_2\delta$, channels required $\chi = 0.55$ as sole parameter change. The simulated charge distributions of primed and inactivated channels are in Fig. 13. In correspondence with experimental observations (Table I), the transition potentials of simulated charge distributions in fully primed or fully inactivated channels were not affected by the change in χ. (The reason is simple: the voltage distribution of mobile charge within modes is sensitive to the chemical potential gradient, not to an additive constant.) The model also described well the

Parameters of the four-state charge 1–charge 2 model (see Scheme I):

<table>
<thead>
<tr>
<th>Transition</th>
<th>Rate Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k_{C\beta}$</td>
<td>$0.5 e^{-\frac{V}{100}}$</td>
</tr>
<tr>
<td>$k_{\beta C}$</td>
<td>$0.5 e^{-\frac{V}{100}}$</td>
</tr>
<tr>
<td>$k_{1\beta}$</td>
<td>$0.05 e^{-\frac{100-V}{1000}}$</td>
</tr>
<tr>
<td>k_{11}</td>
<td>$0.05 e^{-\frac{100-V}{1000}}$</td>
</tr>
<tr>
<td>$k_{\alpha \beta}$</td>
<td>0.0005</td>
</tr>
<tr>
<td>$k_{\beta \alpha}$</td>
<td>0.00005</td>
</tr>
<tr>
<td>k_{C-I}</td>
<td>0.001</td>
</tr>
<tr>
<td>k_{I-C}</td>
<td>$e^{-\frac{100}{V}}$</td>
</tr>
</tbody>
</table>

where rate constants are in ms^{-1} and V is in millivolts.
observed difference in the steepness of the charge distributions between primed and conditioned \(\alpha_1/\beta \) channels. In conditioned \(\alpha_1/\beta \) cells, the steepness of charge distribution measured from an interpulse at 40 mV was \(\sim 40 \) mV, whereas in nonconditioned cells (\(-150 \) mV interpulse) it was \(\sim 30 \) mV. In conditions simulating \(\alpha_1/\beta \) channels (\(\chi = 0.8 \)), the charge distribution of the inactivated channels was also shallower (33 mV) than that of noninactivated channels (25 mV). The difference between the steepness of charge distribution in primed and inactivated \(\alpha_1/\beta \) channels is due to the fact that, because of their fast rate of recovery, the charge distribution of inactivated \(\alpha_1/\beta \) channels cannot be isolated experimentally.

The onset kinetics of inactivation in the model were assessed with the pulse protocol used in the experiment of Fig. 7. The corresponding simulated dependencies of amounts of charge movements on the duration of conditioning depolarization are shown in Fig. 13, C and D. Reduction of charge mobile above \(-50 \) mV was more rapid for \(\chi = 0.55 \) (simulating channels with \(\alpha_1\delta \)) than for \(\chi = 0.8 \), giving rates similar to those obtained experimentally.

Recovery properties of the model were studied with pulse protocols similar to those illustrated in Fig. 9. Fig. 9, E and F, show dependencies of the amount of charge mobile below \(-50 \) mV on the interpulse duration. As observed in the experiments with \(\alpha_1/\beta/\alpha_2\delta \) (Fig. 9 D), simulations with \(\chi = 0.55 \) (Fig. 13 F) exhibit a slow recovery rate and are weakly voltage dependent at voltages below \(-150 \) mV. In agreement with the observations in \(\alpha_1/\beta \) cells (Fig. 9 C), with \(\chi = 0.8 \) recovery is three to five times faster (Fig. 13 E), approaching the speed of recordable charge movement. In all, the continuum model reproduces well the effects of \(\alpha_1\delta \), under the hypothesis that the subunit changes a single parameter of energy distribution.

Modal Separation

With \(\chi = 0.55 \), the model behaves similarly to the channels in the presence of \(\alpha_1\delta \), evolving with two well-defined time scales: a fast one associated with measurable charge movement and a slow one determined by inactivation. This separation of time scales is a requisite for a well-defined charge 2, which can be ascribed unequivocally to mode I.

When \(\chi \) is close to 1 (simulating the absence of the \(\alpha_1\delta \) subunit) the I \(\leftrightarrow \) P conversion becomes very fast at negative voltages, and the separation between time scales becomes less clear cut. At \(-200 \) mV, the most negative potential that is consistently accessible, recovery in simulations of channels lacking \(\alpha_1\delta \) has a \(\tau = 0.28 \) s (Fig. 13 E), in good agreement with the experiment (0.32 s, Fig. 9 C), and well beyond the time needed to complete the measurable movement of charge (\(\sim 50 \) ms). The fastest possible recovery is achieved from \(x = 0 \) (a condition that requires forbiddingly large negative potentials) and proceeds with a time constant of \(\sim 0.16 \) s. This is close to but greater than the time of charge movement, so that modal separation still prevails in simulations of channels without \(\alpha_1\delta \), even at experimentally inaccessible negative potentials.

If the rate constant of the I \(\leftrightarrow \) P reaction (see Appendix, Eq. 11) was just an order of magnitude greater than the value determined for channels without the \(\alpha_1\delta \) subunit, modal separation would break down. This would be reflected in the appearance of a substantial slow component in the charge movement during recov-
ery at intermediate negative voltages, cotemporal with $I \rightarrow P$ transitions. Such a component, not observed experimentally in Ca channels, is a distinctive feature of the gating current in Na channels, the “remobilization” component observed when channels are reprimed at -130 mV (Armstrong and Bezanilla, 1977). For the continuum model to simulate such fast inactivation, it is necessary that the inactivation processes further stabilize the mobile charged moieties in the \textit{trans} (open) position. In that case, some values of x close to 0 will not be populated in the inactivated mode at intermediate negative voltages.

Likewise, Kuo and Bean (1994) were able to simulate onset and recovery of fast inactivation in Na channels with the model illustrated by Scheme II. Therefore, both modal interconversion, documented in the present work, and the so-called charge immobilization phenomena that accompany fast inactivation can be reproduced with general allosteric models of the types represented by Schemes II and III.

The preceding considerations are relevant to whether voltage-dependent inactivation in L-type Ca channels is
slow (C-type) or fast (N-type). Inactivation appears to be slow because it exhibits clear modal separation.

On the other hand, there is an important distinction between voltage-dependent inactivation of Ca channels and slow inactivation of Na and K channels. Whereas in these channels recovery from slow inactivation takes many seconds, in L-type Ca channels recovery would be fast, were it not for the stabilizing effect of the α_δ subunit on the voltage-inactivated states. Structure–function studies are required for establishing the mechanism of this stabilization.

APPENDIX

The continuum model of inactivation, represented in Scheme III, comprises the following set of equations. The energies of modes P and I, in dimensionless expressions are:

$$U_P = q(v - v_P)(1 - x) = A(1 - x) + \eta_B v(1 - x), \quad U_I = q(v - v_I)(1 - x) + \epsilon_{IP} = U_P + C(1 - x - B),$$

where $q = Q/\varepsilon$ is the total charge transfer (in number of electrons), v is dimensionless voltage, equal to $V e/ k_0 T$, v_P and v_I are the energy difference between U_P and U_I at $x = 1$, and A, B, C, and η_B are constants (Levitt, 1989).

To emphasize that at $x = \chi = 1 - B$ the energy difference U_{IP} changes its sign, Eq. 3 can be rewritten as

$$U_{IP} = \epsilon_{IP} + C(1 - x) = C(1 - B - x) = q(v_P - v_I)(\chi - x).$$

The steady state probability densities are defined as follows:

$$P_n(x,v) = \frac{1}{S} e^{-U_n(x,v)}, \quad L_n(x,v) = \frac{1}{S} e^{-U_I(x,v)},$$

where $S = \int_0^1 (e^{-U_n(x,v)} + e^{-U_I(x,v)}) dx$. (5)

The steady state charge distribution $Q_{eq}(V)$ is calculated numerically from

$$Q_{eq}(v) = \int_0^1 q[P_n(x,v) + L_n(x,v)] dx.$$ (6)

Transitions between the two modes are described by the following set of differential equations:

$$\frac{dP}{dt} = -\frac{df}{dx} + k_P I - k_I P,$$

$$f_P = -D_P \frac{d^2P}{dx^2} + \frac{dU_P}{dx}, \quad \text{and}$$

$$\frac{dI}{dt} = -D_I \frac{d^2I}{dx^2} + k_I P - k_P I,$$

$$f_I = -D_I \frac{d^2I}{dx^2} + \frac{dU_I}{dx},$$

where D_P and D_I are generalized diffusion coefficients. The fluxes satisfy reflective boundary conditions:

$$f_P(0) = f_I(0) = f_P(1) = f_I(1) = 0.$$ (8)

The rate constants of the interconversion are defined by the energy profiles. For a symmetrical barrier, the rates are

$$k_P = k_0 e^{-\frac{v_P - v_I}{2}}, \quad \text{and} \quad k_I = k_0 e^{-\frac{v_P - v_I}{2}}.$$ (9)

Eqs. 7 and 8 were solved using a fully implicit finite differencing scheme with a band diagonal system of linear equations. The band diagonal system was solved by the bandec and bandks routines of Press et al. (1992) (The computer program for simulation [DOS and X-Win versions] can be obtained by e-mail request to rshiroko@rush.edu). The x grade was 50. The time steps were automatically adjustable depending on accuracy of solution. The accuracy of the solution was determined as deviation of the total probability from 1 and it was set at 3%. For simulations we used: $q = 3$, $v_P = 0$, $v_I = -4$ (equivalent to -100 mV at room temperature), $D_P = 100 \text{ s}^{-1}$, $D_I = 50 \text{ s}^{-1}$, $k_0 = 0.05 \text{ s}^{-1}$, and $\chi = 0.8$ for $\alpha_\beta/\beta/\alpha_\delta$ channels or $\chi = 0.55$ for $\alpha_\beta/\beta/\alpha_\delta$ channels.

The transfer of mobile charge (from an all-in starting distribution) is calculated by

$$Q(t) = \int_0^1 q[P(x,t) + I(x,t)] dx,$$ (10)

consistent with the definition of the potentials (Eq. 3). The charge movement current is $i_n(t) = dQ/dt$.

From Eqs. 4 and 9, the time constant of the $I \leftrightarrow P$ transition (τ_I) is limited by

$$\tau_{IP} = (k_I + k_P)^{-1} = k_0^{-1} e^{-\frac{(v_P - v_I)(\chi - x)}{2}},$$ (11)

or $\ln(\tau_{IP} k_0) = -6(\chi - x)$ for the parameters used. Because the difference between v_P and v_I is substantial, the time constant τ_{IP} is small compared with k_0, when χ is close to 1 and at x is close to 0.

We thank Drs. Duanpin Chen (Rush University) for discussions and help with the continuum model, and Werner Melzer (University of Ulm, Ulm, Germany) for many comments on the manuscript.

This work was supported by a Scientist Development Grant from the American Heart Association (to R. Shirokov) and by National Institutes of Health grant AR-43113 (to E. Ríos).

Original version received 8 January 1998 and accepted version received 23 March 1998.
REFERENCES

823 SHIROKOV ET AL.