ATP Regulation of Recombinant Type 3 Inositol 1,4,5-Trisphosphate Receptor Gating

DON-ON DANIEL MAK, SEAN McBRIDE, and J. KEVIN FOSKETT

From the Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104

A B S T R A C T A family of inositol 1,4,5-trisphosphate (InsP$_3$) receptor (InsP$_3$R) Ca$^{2+}$ release channels plays a central role in Ca$^{2+}$ signaling in most cells, but functional correlates of isoform diversity are unclear. Patch-clamp electrophysiology of endogenous type 1 (X-InsP$_3$R-1) and recombinant rat type 3 InsP$_3$R (r-InsP$_3$R-3) channels in the outer membrane of isolated Xenopus oocyte nuclei indicated that enhanced affinity and reduced cooperativity of Ca$^{2+}$ activation sites of the InsP$_3$-liganded type 3 channel distinguished the two isoforms. Because Ca$^{2+}$ activation of type 1 channel was the target of regulation by cytoplasmic ATP free acid concentration ([ATP]$_i$), here we studied the effects of [ATP]$_i$ on the dependence of r-InsP$_3$R-3 gating on cytoplasmic free Ca$^{2+}$ concentration ([Ca$^{2+}]$). As [ATP]$_i$ was increased from 0 to 0.5 mM, maximum r-InsP$_3$R-3 channel open probability (P_o) remained unchanged, whereas the half-maximal activating [Ca$^{2+}$]$_i$ and activation Hill coefficient both decreased continuously, from 800 to 77 nM and from 1.6 to 1, respectively, and the half-maximal inhibitory [Ca$^{2+}$]$_i$ was reduced from 115 to 39 μM. These effects were largely due to effects of ATP on the mean closed channel duration. Whereas the r-InsP$_3$R-3 had a substantially higher P_o than X-InsP$_3$R-1 in activating [Ca$^{2+}$]$_i$ (<1 μM) and 0.5 mM ATP, the Ca$^{2+}$ dependencies of channel gating of the two isoforms became remarkably similar in the absence of ATP. Our results suggest that ATP binding is responsible for conferring distinct gating properties on the two InsP$_3$R channel isoforms. Possible molecular models to account for the distinct regulation by ATP of the Ca$^{2+}$ activation properties of the two channel isoforms and the physiological implications of these results are discussed. Complex regulation by ATP of the types 1 and 3 InsP$_3$R channel activities may enable cells to generate sophisticated patterns of Ca$^{2+}$ signals with cytoplasmic ATP as one of the second messengers.

K E Y W O R D S: allosteric regulation• calcium release channel • single-channel electrophysiology • patch clamp • Xenopus oocyte

I N T R O D U C T I O N

Modulation of free cytoplasmic Ca$^{2+}$ concentration ([Ca$^{2+}]$) is a ubiquitous cellular signaling system. In many cell types, binding of ligands to plasma membrane receptors activates the hydrolysis of phosphatidylinositol 4,5-bisphosphate by membrane-bound phospholipase C, generating inositol 1,4,5-trisphosphate (InsP$_3$). InsP$_3$ causes the release of Ca$^{2+}$ from the endoplasmic reticulum (ER) by binding to its receptor (InsP$_3$R), which itself is a Ca$^{2+}$ channel (Taylor and Richardson, 1991; Berridge, 1993; Putney and St. J. Bird, 1993). A family of InsP$_3$R isoforms (types 1, 2, and 3) with different primary sequences derived from different genes and alternatively spliced isoforms has been identified. The different isoforms have distinct and overlapping patterns of expression in different tissues. Most, if not all, mammalian cells express multiple isoforms whose absolute and relative expression levels can be modified by cell differentiation and physiological status, and which may associate as heterotramers.

The functional correlates of this impressive diversity of InsP$_3$R expression are largely unknown (see introduction of Mak et al., 2001, in this issue). Expression and single-channel recording of the recombinant rat type 3 InsP$_3$R (r-InsP$_3$R-3) channels in Xenopus oocyte nuclear membrane patches (Mak et al., 2000, 2001) demonstrated that they have remarkably similar ion permeation and channel gating properties as the Xenopus type 1 InsP$_3$R (X-InsP$_3$R-1). Of note, r-InsP$_3$R-3 gating also exhibits a biphasic dependence on [Ca$^{2+}$]$_i$, with properties of the inhibitory Ca$^{2+}$ site and allosteric tuning of that site by InsP$_3$ highly similar to those properties of the endogenous X-InsP$_3$R-1. In contrast, the r-InsP$_3$R-3 channel is uniquely distinguished from the type 1 channel by enhanced Ca$^{2+}$ sensitivity of, and lack of cooperativity between, the Ca$^{2+}$ activation sites (see Mak et al., 2001, in this issue; Fig. 1). Interestingly, studies of the regulation by ATP of the X-InsP$_3$R-1 channel revealed that the mechanism by which cytoplasmic free ATP stimulates its gating in low [Ca$^{2+}]_i$ (<1 μM) is by specifically increasing the affinity of the Ca$^{2+}$ activating site of the channel without affecting the degree of co-
Operativity for Ca\(^{2+}\) activation or the maximum open probability \(P_o\) decreases when [ATP] is decreased, this can be fully reversed by increasing \([\text{Ca}^{2+}]_o\), demonstrating that ATP is not a necessary agonist for activation of the InsP\(_3\)R, but is rather an allosteric regulator, tuning the efficacy of Ca\(^{2+}\) to stimulate the activity of the InsP\(_3\)-liganded InsP\(_3\)R over a limited range of \([\text{Ca}^{2+}]_o\) (10 mM–1 \(\mu\)M). Therefore, InsP\(_3\) and ATP are complementary allosteric regulators of InsP\(_3\)R gating: InsP\(_3\) is a specific regulator of Ca\(^{2+}\) inhibition of Ca\(^{2+}\) release, tuning the functional affinity of the inhibitory Ca\(^{2+}\) binding sites of the channel (Mak et al., 1998, 2001), whereas ATP is a regulator of Ca\(^{2+}\)-induced Ca\(^{2+}\) release, tuning the functional affinity of the activating Ca\(^{2+}\) binding sites.

Because the properties of the Ca\(^{2+}\) activation sites represented the only significant distinction between the types 1 and 3 InsP\(_3\)R channels that could be discerned in our previous studies, and Ca\(^{2+}\) activation of XInsP\(_3\)R-1 channel gating is modulated by ATP, here we have investigated the effects of ATP on the gating properties of the recombinant r-InsP\(_3\)R-3 channel. Surprisingly, our results reveal that the presence of ATP is absolutely necessary to confer distinct Ca\(^{2+}\) activation properties to the types 1 and 3 channels because, in its absence, Ca\(^{2+}\) activation of the two channels is very similar. ATP activates type 3 channel gating in a dramatically different manner compared with its effects on the type 1 channel: whereas maximal \(P_o\) of both isoforms is similarly unaffected by [ATP], ATP abolishes the cooperativity of Ca\(^{2+}\) activation of r-InsP\(_3\)R-3 besides increasing the functional affinity of the activating Ca\(^{2+}\) binding sites. Thus, complex allosteric dependencies on [ATP], of the gating of types 1 and 3 InsP\(_3\)R channels, coupled with differential levels of expression and subcellular localization, may enable cells to generate sophisticated Ca\(^{2+}\) signals, with cytoplasmic ATP as one of the second messengers.

MATERIALS AND METHODS

Xenopus oocytes were obtained and selected for a low functional expression level of the endogenous XInsP\(_3\)R-1 as described previously (Mak et al., 2001). Of 89 nuclear patches obtained from isolated nuclei of selected uninjected oocytes, only 1 channel was detected. The mean number of InsP\(_3\)R channels per nuclear patch was 0.011. Selected oocytes were microinjected with r-InsP\(_3\)R-3 cRNA and used for nuclear patch-clamp experiments 4–5 d after injection. The mean number of InsP\(_3\)R channels per nuclear patch for the cRNA-injected oocytes increased dramatically to 1.65. In 330 nuclear patches, 544 channels were detected in 167 patches, with 105 patches exhibiting multiple InsP\(_3\)R channels. Assuming random, binominal association of XInsP\(_3\)R-1 and r-InsP\(_3\)R-3 to form tetrameric channels (Mak et al., 2000), most (97.4%) of the channels detected in cRNA-injected oocytes are predicted to be homotetrameric r-InsP\(_3\)-3 channels.

Nuclear patch-clamp experiments were performed on isolated nuclei from cRNA-injected oocytes as described in the companion paper (see Mak et al., 2001, in this issue), except the pipet solutions used in this study contained a saturating concentration of 10 \(\mu\)M InsP\(_3\) (used without further purification; Molecular Probes), various concentrations of Na\(_2\)ATP, and either 0 or 3 mM Mg\(_2\)Cl\(_2\) as stated. Because of chelation of Mg\(^{2+}\) by ATP, the actual free Mg\(^{2+}\) in the solutions was 0 or 2.5 mM. The bath solutions used in all experiment had 140 mM KCl, 10 mM HEPES, 300 \(\mu\)M CaCl\(_2\), and 500 \(\mu\)M BAPTA ([Ca\(^{2+}\)] = 500 nM), pH 7.3.

Data acquisition and analysis were performed as described in the companion paper (see Mak et al., 2001, in this issue).

RESULTS

ATP Activation of Recombinant Type 3 InsP\(_3\)R

To study the effects of [ATP], on gating of single recombinant r-InsP\(_3\)R-3 channels in their native ER membrane environment, we performed patch-clamp experiments on nuclei isolated from oocytes injected with cRNA of r-InsP\(_3\)R-3. Although the oocyte expresses endogenously a type 1 InsP\(_3\)R, under the conditions of our experiments, >90% of the channels recorded were contributed by type 3 homotetramers (Mak et al., 2000). To facilitate comparisons with experimental results obtained for the type 1 InsP\(_3\)R (Mak et al., 1999), the patch-clamp experiments were performed for the InsP\(_3\)R-3 using similar experimental conditions. The pipet solutions contained various \([\text{Ca}^{2+}]\), with 0.5 mM ATP alone, 3 mM Mg\(^{2+}\) alone, 0.5 mM ATP and 3 mM Mg\(^{2+}\) (calculated [ATP] = 12 \(\mu\)M; calculated [Mg\(^{2+}\)] = 2.5 mM), or no ATP or Mg\(^{2+}\). To avoid possible effects of Ca\(^{2+}\) on InsP\(_3\) binding (Hagar and Ehrlich, 2000; Meas et al., 2000), a functionally saturating InsP\(_3\) concentration of 10 \(\mu\)M was used.

r-InsP\(_3\)R-3 channel activities with a high \(P_o\) of 0.6 (Fig. 2A) and gating kinetics similar to those of the r-InsP\(_3\)R-3 reported previously (see Mak et al., 2001, in this issue) were observed in pipet solutions containing 0.5 mM.
free ATP, and ~250 nM free Ca\(^{2+}\). In the absence of ATP, in contrast, the r-InsP\(_3\)R-3 channel had significantly lower \(P_o\) of 0.2, either in the presence or absence of 3 mM Mg\(^{2+}\) (Fig. 2, B and C). ATP did not affect the conductance of the r-InsP\(_3\)R-3 channel (Fig. 2, A and B). The time course of channel inactivation of the r-InsP\(_3\)R-3 channel was not substantially different in the presence and absence of ATP.

To examine in more detail if the presence of the MgATP complex affects the \(P_o\) of the r-InsP\(_3\)R-3, similar experiments were performed using pipet solutions containing 3 mM total Mg\(^{2+}\) and 0.5 mM total ATP, so that the calculated [MgATP], free Mg\(^{2+}\) concentration ([Mg\(^{2+}\)], and [ATP]), were 0.5 mM, 2.5 mM, and 12 \(\mu\)M, respectively. The \(P_o\) of the r-InsP\(_3\)R-3 channel remained low under these conditions (Fig. 2 D). Thus, the r-InsP\(_3\)R-3 is activated by ATP free acid (ATP\(^{3-}\) or ATP\(^{4-}\)), but not by the MgATP complex (Fig. 2 E), suggesting that ATP hydrolysis is not involved in ATP activation of the type 3 InsP\(_3\)R. Therefore, this behavior is similar to that of the type 1 InsP\(_3\)R channel (Mak et al., 1999).

This activation of r-InsP\(_3\)R-3 by ATP was prominently observed only at low [Ca\(^{2+}\)], (<1 \(\mu\)M). At optimal [Ca\(^{2+}\)], (>2 \(\mu\)M), the channel \(P_o\) achieved the maximum value of ~0.8 in both 0 or 0.5 mM free [ATP], (Fig. 3).

Effects of ATP on the Ca\(^{2+}\) Dependence of Types 1 and 3 InsP\(_3\)R Gating

To determine the mechanisms by which ATP activates r-InsP\(_3\)R-3 channel gating, we investigated systematically the effects of cytoplasmic ATP on the channel kinetics over a wide range of [Ca\(^{2+}\)]. In the absence of ATP, Ca\(^{2+}\) dependence of channel \(P_o\) of the InsP\(_3\)R-3 channel conductance in the presence of Mg\(^{2+}\) (C and D) is caused by permeant ion block of the channel by the divalent cation (Mak and Foskett, 1998). (E) Single-channel open probability (\(P_o\)) of the r-InsP\(_3\)R-3 channel in conditions specified in A–D. Asterisk represents \(P < 0.05\).

3). Thus, as in the case for XInsP\(_3\)R-1 (Mak et al., 1999), ATP is not essential for maximal activation of r-InsP\(_3\)R-3.

\[
P_o = P_{\text{max}} \left\{ 1 + \left[\frac{[\text{MgATP}]}{K_{\text{act}}} \right]^{H_{\text{act}}} \right\}^{-1} \\
\left\{ 1 + \left[\frac{[\text{Ca}^{2+}]}{K_{\text{inh}}} \right]^{H_{\text{inh}}} \right\}^{-1}
\]

with a maximum open probability \((P_{\text{max}})\) of 0.84 ± 0.02, a half-maximal activating \([\text{Ca}^{2+}]\), \((K_{\text{act}})\) of 800 ± 50 nM, an activation Hill coefficient \((H_{\text{act}})\) of 1.6 ± 0.3, and a half-maximal inhibitory \([\text{Ca}^{2+}]\), \((K_{\text{inh}})\) of 115 ± 15 \(\mu\)M, and an inhibition Hill coefficient \((H_{\text{inh}})\) of 2 ± 0.5 (Table 1).

This behavior is dramatically different from the Ca\(^{2+}\) dependence of gating of the r-InsP\(_3\)R-3 in the presence of 0.5 mM cytoplasmic free ATP (Fig. 4 A). At high, inhibitory [Ca\(^{2+}\)], the presence of 0.5 mM ATP decreased the value of \(K_{\text{inh}}\) from 115 to 39 \(\mu\)M such that, in [Ca\(^{2+}\)], > 50 \(\mu\)M, the r-InsP\(_3\)R-3 channel activity was
ATP Regulation of Recombinant Type 3 InsP3 Receptor

Parameters for the biphasic Hill equations (Eq. 1) that fit the Ca$^{2+}$ dependence of the P_c of InsP3R channels under various experimental conditions. [ATP]$_i$ refers to the concentration of ATP free acid. Parameters for C are from Mak et al. (2001), parameters for E are from Mak et al. (1999). N/A, not available.

Examination of the gating kinetics of the r-InsP3R-3 channel revealed that the mean open channel duration (τ_o) in the absence of cytoplasmic ATP lay within a narrow range between 3 and 12 ms over the range of [Ca$^{2+}$]$_i$ (Fig. 4 A). In contrast, the mean closed channel duration (τ_c) decreased nearly an order of magnitude, from 18 to 2 ms, as [Ca$^{2+}$]$_i$ increased from 0.2 to 6 μM, and then remained low (~2 ms) in high [Ca$^{2+}$]$_i$ (6–120 μM). The changes in τ_c accounted for the major part of the Ca$^{2+}$ activation of channel activity. These Ca$^{2+}$ dependencies of τ_c and τ_o of the type 3 channel in the absence of ATP are reminiscent of those of X-InsP3R-1 in 0 mM ATP (Mak et al., 1999).

Figure 5. Ca$^{2+}$ dependencies of types 1 and 3 InsP3R channel P_o in the absence of ATP. Open triangles represent data for X-InsP3R-1 obtained from uninjected oocytes. Closed squares represent data for r-InsP3R-3 obtained from cRNA-injected oocytes. The curves (dashed for X-InsP3R-1 and solid for r-InsP3R-3) are the biphasic Hill equation fits using Eq. 1 and parameters tabulated in Table I.
Durations graph, data points obtained with the same InsP3 concentrations of the r-InsP3R-3 channels in the presence of 0 (■) or 0.5 mM (○) cytoplasmic free ATP. In the closed channel duration graph, data points obtained with the same InsP3 concentrations are connected with a line for clarity.

The presence of ATP enhanced r-InsP3R-3 channel activity at low [Ca2+]i (<2 μM) (Figs. 2 and 3) by both stabilizing the open channel kinetic state(s) and destabilizing the closed kinetic state(s) (Fig. 6). As [Ca2+]i increased from 10 to 83 μM, ATP reduced r-InsP3R-3 channel activity by stabilizing closed kinetic state(s) so that τc increased dramatically (Figs. 4 and 6).

Effects of ATP Concentration on Ca2+ Activation of r-InsP3R-3

The effects of cytoplasmic ATP concentration on the Ca2+ activation of the r-InsP3R-3 were studied in more detail in a series of patch-clamp experiments using various [ATP], between 0 and 9.5 mM, over a wide range of [Ca2+]i, between 20 nM and 6 μM. The pipet solutions again contained 10 μM InsP3, sufficient to saturate the InsP3R (Mak et al., 2001). For each ATP concentration employed, the channel Po data over the range of [Ca2+]i, estimated from the open and closed kinetic state(s) so that calculated by the activation Hill equation:

\[P_o = P_{max} \left\{1 + \left(\frac{[Ca^{2+}]}{K_{act}}\right)^{H_{act}}\right\}^{-1}, \]

with \(P_{max} \sim 0.8 \) for all [ATP] used (0–9.5 mM). Between [ATP], of 0 and 500 μM, both \(K_{act} \) and \(H_{act} \) changed continuously (Fig. 4 A and Table I). At concentrations of ATP >500 μM, the activation of r-InsP3R-3 by Ca2+ exhibited no further systematic change (Fig. 4 A).

Discussion

Inositol trisphosphate–mediated intracellular Ca2+ signaling is under complex regulation because the gating of the InsP3R Ca2+ release channel is sensitive to [Ca2+]i, as well as to [InsP3]i (Bezprozvanny and Ehrllich, 1995; Joseph, 1995; Taylor and Traynor, 1995). Gating of the InsP3-ligated channel requires Ca2+ binding to activation sites, whereas it is inhibited by Ca2+ binding to inhibition sites (Taylor and Marshall, 1992; Iino and Tsukitani, 1994; Mak et al., 1998), resulting in a biphasic dependence on [Ca2+]i. In patch-clamp studies of the endogenous XInsP3R-1 channel (Mak and Foskett, 1994, 1997, 1998; Mak et al., 1998) or the recombinant r-InsP3R-3 channel (see Mak et al., 2001, in this issue) in the outer membrane of isolated Xenopus oocyte nuclei, gating of both the InsP3-ligated types 1 and 3 channels under optimal conditions exhibits robust activity, with a \(P_{max} \) of ∼0.8 over a wide range of [Ca2+]i (Mak et al., 1998, 2001). In addition, InsP3 binding was found to activate both isoforms of the InsP3R by allosterically reducing the Ca2+ affinity of the inhibitory binding sites on the channel (Mak et al., 1998). When [InsP3]i is low, the channel is inhibited by Ca2+ because the Ca2+ affinity of the inhibitory site is higher than that of the activating site. At higher [InsP3]i, the channel becomes less sensitive to Ca2+ inhibition. When the affinity of the Ca2+ inhibitory site(s) falls below that of the activating site(s), the channel can become fully activated. Furthermore, the properties of the InsP3 binding site and the Ca2+ inhibition site are similar for the Xenopus type 1 and recombinant type 3 channels in the same nuclear membrane system: the functional affinity for InsP3 is ∼50 nM for both channels, and both channel isoforms exhibit \(K_{act} \) of 40–50 μM with Hill coefficient of 3–4 in the presence of 0.5 mM free ATP and saturating concentrations (~10 μM) of InsP3.

In contrast, the properties of the Ca2+ activation sites differ between the two isoforms. In nuclear patch-clamp studies, the type 3 channel is uniquely distinguished from the type 1 channel by enhanced sensitivity of (\(K_{act} \) of 77 nM instead of 190 nM) and lack of cooperativity between the Ca2+ activation sites (\(H_{act} \) of 1 instead of ∼2) in the presence of 0.5 mM free ATP and saturating concentrations (10 μM) of InsP3 (Mak et al., 1998, 2001). As a result, the r-InsP3R-3 has a substantially higher \(P_{max} \) than the endogenous XInsP3R-1 in activating [Ca2+]i, (<1 μM) in the presence of 0.5 mM ATP (Fig. 1). We have suggested that these properties endow the InsP3R-3 with high gain InsP3–induced Ca2+ release and low gain Ca2+-induced Ca2+ release properties, features which are complementary to the low gain InsP3–induced Ca2+ release and high gain Ca2+-induced Ca2+ release properties of InsP3R-1.

Our previous study of the regulation by ATP of the XInsP3R-1 channel (Mak et al., 1999) revealed that the mechanism by which ATP stimulates gating of the InsP3R-1 involved increasing the affinity of the Ca2+ activating site of the channel specifically (i.e., decreasing...
the K_{inh}, without affecting H_{act} or P_{max} (Mak et al., 1999). Although channel P_{a} decreased when [ATP] was decreased, this could be fully reversed by increasing $[Ca^{2+}]_{i}$, demonstrating that ATP is not a necessary agonist for activation of the InsP$_3$R, but is rather an allosteric regulator, tuning the efficacy of Ca^{2+} to stimulate the activity of the InsP$_3$-liganded InsP$_3$R-1 over a limited range of $[Ca^{2+}]_{i}$ (10 nM to 1 μM).

Because the Ca^{2+}-activation properties of channel gating was the major feature distinguishing the types 1 and 3 channels, and these properties of the type 1 channel were regulated by [ATP], we therefore investigated the effects of ATP on the gating of the type 3 channel.

ATP Tuning of the Affinities of the InsP$_3$R Inhibitory Ca^{2+} Binding Sites

Our patch-clamp experimental data indicate that ATP decreases K_{inh} of both types 1 and 3 InsP$_3$R in very similar manner, whereas P_{max} values remained unchanged (Table 1). Thus, ATP reduces the channel activities of both InsP$_3$R channels at $[Ca^{2+}]_{i} > 10$ μM by decreasing K_{inh}, from \sim110 μM in the absence of ATP to \sim45 μM at 0.5 mM ATP (Figs. 1, 4, and 5). This reduction of K_{inh} could not be reversed by the application of supersaturating $[InsP_3]_{i}$ (10 μM) that was substantially higher than the half-maximal $[InsP_3]_{i}$ (\sim50 nM for X-InsP$_3$R-1 (Mak et al., 1998) and r-InsP$_3$R-3 (Mak et al., 2001). Thus, the more efficacious inhibition of InsP$_3$R channel activities by high $[Ca^{2+}]_{i}$ (>10 μM) in the presence of ATP is independent of any possible competitive inhibition of InsP$_3$ binding to the InsP$_3$R by ATP (Bezprozvanny and Ehrlich, 1993; Hagar and Ehrlich, 2000; Meas et al., 2000), and may be a mechanism through which [ATP] can regulate feedback inhibition of InsP$_3$-mediated Ca$^{2+}$ release.

Although binding assays have indicated that ATP can competitively inhibit binding of InsP$_3$ to InsP$_3$R-3 (Meas et al., 2000), no inhibition of the recombinant r-InsP$_3$R-3 channel activities was observed in $[Ca^{2+}]_{i} < 1$ μM by even 9.5 mM ATP under our experimental conditions. This is likely due to our use of a supersaturating $[InsP_3]_{i}$ (10 μM) that far exceeds the K_{inh} of r-InsP$_3$R-3 (\sim55 nM; Mak et al., 2001). As InsP$_3$ affects the InsP$_3$-R channel activity solely by tuning the affinity of the inhibitory Ca$^{2+}$ binding site(s) and has no effect on Ca$^{2+}$ activation of the channel (Mak et al., 2001), effective InsP$_3$ binding must be reduced to $<0.3\%$ (Mak et al., 2001) before effects of competitive inhibition of InsP$_3$ binding by ATP would be observed in activating $[Ca^{2+}]_{i} (<1$ μM) in our experiments. This requires [ATP] > 10 nM (Meas et al., 2000), which is higher than the range of [ATP] used in our experiment. An inhibition by 7–10 mM ATP of InsP$_3$-R-3 single-channel activities in lipid bilayers in 160 nM Ca$^{2+}$ and 2 μM InsP$_3$ (Hagar and Ehrlich, 2000) was probably caused by the reduced functional sensitivity to activation by InsP$_3$ of the type 3 channel reconstituted into bilayers (EC$_{50}$ of 3.2 μM in 160 nM Ca$^{2+}$) compared with that observed in our experiments (see Mak et al., 2001, in this issue). In fact, enhancement, not inhibition, of InsP$_3$R-3 channel activity by 10 mM ATP was also observed in the presence of 10 μM InsP$_3$ in permeabilized cells using Ca$^{2+}$ imaging (Miyakawa et al., 1999). Similarly, no evidence of ATP inhibition of InsP$_3$ binding to InsP$_3$R-1 was observed in our characterization of regulation by ATP (0–9.5 mM) of Ca$^{2+}$ activation of XInsP$_3$R-1 (Mak et al., 1999), again because of application of supersaturating $[InsP_3]_{i}$ (Mak et al., 1998). Therefore, differential inhibition of InsP$_3$ binding to types 1 and 3 InsP$_3$R reported in Meas et al. (2000) has no impact on our characterization of ATP regulation of InsP$_3$R channel activities in Mak et al. (1999) and this study.

ATP Enhancement of Ca$^{2+}$ Activation of r-InsP$_3$R-3 Channel

Our systematic single-channel patch-clamp experimental data demonstrated that, in the nuclear membrane system, cytoplasmic free ATP, but not MgATP, enhanced the activation by Ca$^{2+}$ (<1 μM) of recombinant type 3 InsP$_3$R channel through an increase of the Ca$^{2+}$affinity and decrease of the cooperativity of the activating sites of the channel.

The effects of cytoplasmatic ATP on the activity of the InsP$_3$R-3 have been studied previously primarily by Ca$^{2+}$ release assays using cells that expressed endogenous type 3 InsP$_3$R as the only (Miyakawa et al., 1999) or major (Missiaen et al., 1998; Meas et al., 2000) InsP$_3$R isoform. Enhancement of Ca$^{2+}$ release by ATP was observed in all the studies. The half-maximal ATP concentrations of 341 and 177 μM reported for ATP activation of Ca$^{2+}$ release (Missiaen et al., 1998) and ATP inhibition of photoaffinity labeling (Meas et al., 2000), respectively, of InsP$_3$R-3 are comparable to our experimental results with the activation of r-InsP$_3$R-3 channel saturated by 0.5 mM ATP. Our patch-clamp data indicate that ATP decreases the apparent Hill coefficient of Ca$^{2+}$ activation of the InsP$_3$R-3 channel, whereas ATP did not apparently have such an effect on Ca$^{2+}$ release in permeabilized 16HBE14o- cells (Missiaen et al., 1998). This difference is probably due to the very different experimental systems used. Whereas our patch-clamp experiments measure directly the single-channel activities of the InsP$_3$R under rigorously controlled experimental conditions, measurements of Ca$^{2+}$ flux characterize the activities of heterogeneous populations of unknown numbers of InsP$_3$R containing various isoforms (Sienaert et al., 1998) and possibly heterooligomers, from which the single-channel activities of the InsP$_3$R can only be inferred indirectly. The effects of cytoplasmatic free ATP on InsP$_3$-induced Ca$^{2+}$ release in permeabilized B cells genetically engineered to express individual InsP$_3$R isoforms was reported in Mi-
Under our experimental conditions, only free ATP, not the MgATP complex, enhanced r-InsP₃R-3 channel activity, as in the case for the X-InsP₃R-1 (Mak et al., 1999). However, Ca²⁺ flux measurements in permeabilized cells suggested that MgATP also enhanced Ca²⁺ release mediated by the InsP₃R-3 (Meas et al., 2000). This discrepancy may be due to the fact that single-channel Pₒ is directly measured in our nuclear patch-clamp experiments, whereas Ca²⁺ flux measurements are affected by the Ca²⁺ conductance of the InsP₃R channels as well as their Pₒ. Because Mg²⁺ is a permeant blocking ion of the InsP₃R (Mak and Foskett, 1998; Mak et al., 2000), the presence of Mg²⁺ would be expected to reduce InsP₃-induced Ca²⁺ flux through the InsP₃R, as observed in Meas et al. (2000). Thus, addition of ATP could generate an apparent increase in the observed Ca²⁺ flux because the added ATP lowered the concentration of free Mg²⁺ by forming the MgATP complex, thus alleviating the Mg²⁺ blockage of the InsP₃R.

Recently, the effects of ATP on InsP₃-R-3 channel properties were studied (Hagar and Ehrlich, 2000) by reconstituting into planar lipid bilayers InsP₃R in microsomes isolated from RIN-m5F cells that express mainly type 3 InsP₃R (77–96%; Wojcikiewicz and He, 1995; SWATTON et al., 1999). Under the lipid bilayer experimental conditions, ATP (<6 mM) activated the channels by decreasing the mean closed channel durations and increasing the mean open channel durations, but did not affect the channel conductance. This agrees qualitatively with our patch-clamp results (Figs. 2, 4, and 6). However, the reconstituted InsP₃-R-3 in planar lipid bilayers exhibited a half-maximal activating [ATP], of 2.8 mM, whereas the r-InsP₃-R-3 in our nuclear membrane patches was fully activated by 0.5 mM ATP (Fig. 4A). The cause of the discrepancy between the two experimental systems is uncertain; the microenvironment (lipid membranes, buffer solutions, and transmembrane voltages) experienced by the InsP₃-R-3 channel in the two studies were very different. However, as the planar lipid bilayer system consistently recorded a significantly lower maximum Pₒ (~0.05) for both the type 3 (Hagar et al., 1998; Hagar and Ehrlich, 2000) and type 1 (KAFTAN et al., 1997) InsP₃R than was observed in our experimental system (0.8 for both types 1 and 3 InsP₃R), it is possible that cellular factors, like phosphatidylinositol 4,5-bisphosphate (LUPU et al., 1998), may be associated with the InsP₃R reconstituted into the planar lipid bilayer system, and reduce the channel activities of the InsP₃R and the efficacy of ATP to activate it.

Molecular Models for ATP Regulation of Ca²⁺ Activation of the InsP₃R

In a previous study of ATP regulation of the single-channel activity of the X-InsP₃R-1 (Mak et al., 1999), it was demonstrated that ATP activates the X-InsP₃R-1 channel not by increasing the Pₒ but by increasing the apparent affinity of the activating Ca²⁺ binding site(s), i.e., decreasing Kₛₛ. Within the range of [ATP], used in that study (0–9.5 mM), [ATP], had no observable effect on the value of Hₛₛ. The data could be interpreted by an empirical model described by a modified Michaelis-Menten equation, in which [ATP], only affects the functional affinity of the activating Ca²⁺ binding site(s) of the X-InsP₃R-1 with no effects on the cooperativity of those sites (Mak et al., 1999).

In contrast, the regulation by ATP of the r-InsP₃-R-3 observed in this study is dramatically different. Whereas Pₒ of the r-InsP₃-R-3 was similarly unaffected by [ATP], both Hₛₛ and Kₛₛ of the type 3 channel were reduced by ATP. Furthermore, these effects of ATP on the Ca²⁺ activation of the r-InsP₃-R-3 were saturated by 0.5 mM ATP (Fig. 4A), whereas increasing [ATP] up to several mM continued to further decrease Kₛₛ of the type 1 channel (Mak et al., 1999). Of particular interest is that the Ca²⁺ activation responses of the two isoforms become essentially the same in the absence of ATP (Fig. 5). Remarkably, therefore, the major feature distinguishing the types 1 and 3 channel isoforms (Mak et al., 2001) is dependent on the presence of ATP. In the absence of ATP, the permeation and gating behaviors of the two isoforms are indistinguishable in our nuclear patch-clamp studies.

How can we account for the distinct regulation by ATP of the Ca²⁺ activation properties of the two channel isoforms? Analysis of the primary sequence of the type 1 InsP₃R (MIGNERY et al., 1990) revealed two putative ATP binding sites (YAMADA et al., 1994), only one of which is conserved in the sequence of the type 3 InsP₃R (MARANTO, 1994; YAMAMOTO-HINO et al., 1994). Glutathione-S-transferase (GST)–fusion proteins containing the putative type 1–specific ATP-binding sequence or the ATP-binding sequence present in both types 1 and 3 InsP₃R have both been shown to bind ATP in vitro (MAES et al., 1999). Therefore, it is possible that the functional ATP binding sites responsible for the regulation by ATP are distinct between the types 1 and 3 channels. Accordingly, whereas ATP binds with a functional affinity of ~0.27 mM to the functional ATP binding site in type 1 InsP₃R and increases the sensitivity of the channel to Ca²⁺ activation without affecting the cooperativity of Ca²⁺ activation (Mak et al., 1999), it might...
bind with a higher affinity to a different functional ATP binding site in the type 3 InsP₃R. In this model, binding to this distinct site in the type 3 channel would change, through a different molecular mechanism, the number and cooperativity of Ca²⁺ binding site(s) involved in the Ca²⁺ activation of the r-InsP₃R-3, as well as the sensitivity of the channel to Ca²⁺ activation.

Alternately, the regulation of InsP₃R by ATP and Ca²⁺ can be accounted for by the molecular Monod-Wyman-Changeux (MWC) model (Monod et al., 1965) for allosteric systems. In this allosteric model, the InsP₃R channel can exist in two conformations, one active and one inactive. In the absence of ligands, the channel mostly exists in the inactive conformation. Both ATP and Ca²⁺ regulate the InsP₃R channel as activating heterotropic ligands (Monod et al., 1965) by preferentially binding to and stabilizing the active conformation of the channel. Although not a general feature of the MWC model, our experiment results showed that ATP and Ca²⁺ are not equivalent heterotropic ligands of the InsP₃R channel. The InsP₃R channel had low Pₒ at low [Ca²⁺], despite the presence of saturating [ATP], whereas the channel exhibited high Pₒ at optimal [Ca²⁺], even in the absence of ATP (Figs. 4 A and 5; Mak et al., 1999). To account for this non-equivalence in a modified MWC model, we assume that Ca²⁺ must bind to one or more of the activating Ca²⁺ binding sites in the channel before the channel can be active, whereas ATP binding is not necessary.

In the MWC model, InsP₃R channel activity can exhibit a dependence on the concentration of one of its ligands (Ca²⁺) with a Hill coefficient >1 regardless of the number of Ca²⁺ required to bind to the channel to open it (our unpublished data). The MWC model also predicts that the apparent half-maximal activating concentration (Kₒ) of one ligand (Ca²⁺) can vary in the presence of different concentrations of the other ligand (ATP), even though the dissociation constants for the ligands of both conformations of the channel remains unchanged. Furthermore, heterotropic effects of Ca²⁺ and ATP on the InsP₃R channel can change the Hill coefficient for Ca²⁺ activation (Hₛₒ) of the channel without changing the number of Ca²⁺ required to bind to the channel before it can adopt the active conformation. Thus, according to the MWC model, binding of ATP, a heterotropic ligand, to the r-InsP₃R-3 channel can abolish the cooperativity of Ca²⁺ and simultaneously decrease its half-maximal activating concentration (Monod et al., 1965). The magnitudes of changes in the observed Kₒ and Hₛₒ for Ca²⁺ activation of an InsP₃R isoform due to heterotropic effects of ATP, and the range of [ATP], over which the changes occur, will depend on relevant parameters of that isoform, including the relative stability of the active and inactive conformations, and the affinities of those conformations for the ligands. With a different set of parameters for the type 1 InsP₃R, the binding of ATP can continuously change the observed Kₒ for Ca²⁺ activation over a wide range of [ATP], without affecting the value of Hₛₒ observably. Therefore, despite the observed differences in the regulation by ATP of the Ca²⁺ activation of the types 1 and 3 InsP₃R, it is possible that ATP regulates Ca²⁺ activation of the two InsP₃R isoforms through the same MWC allosteric mechanism, with the different channel isoforms possessing different sets of relevant parameters. Because there are a large number of parameters involved in a MWC model for a tetrameric channel interacting with two ligands (Changeux and Edelstein, 1998; Jones, 1999), detailed numerical fittings by the MWC model of the r-InsP₃R-3 channel open probability and dwell time distribution data, similar to those performed in Rothenberg and Magleby (1999), will be necessary to determine if the regulation by ATP and Ca²⁺ of channel gating of InsP₃R (both types 1 and 3) can be well described by such a model.

Differential Regulation by ATP of Ca²⁺ Activation of the Types 1 and 3 InsP₃R Isoforms

We characterized previously the permeation properties, propensity to cluster, and regulation by Ca²⁺ and InsP₃ of the type 3 InsP₃R channel (Mak et al., 2000), and concluded that the only parameter that distinguishes the types 1 and 3 isoforms in the same membrane under identical experimental conditions is their Ca²⁺ activation properties. However, the results of this study reveal that cytoplasmic ATP is critical to establishing this difference between the Ca²⁺ responses of the two isoforms. In the absence of ATP, the biphasic Ca²⁺ responses of the Xr-InsP₃R-1 and r-InsP₃R-3 are very similar (Fig. 5). This may have important consequences in cells that express both isoforms. As a result of the difference in the regulation of the two InsP₃R isoforms by ATP, the relative level of activation of the two InsP₃ liganded isoforms by [Ca²⁺] (between 10 and 1,000 nM) will vary in a complex pattern with changes in [ATP], as depicted in Fig. 7. When [ATP], is <0.5 mM, the InsP₃R-1 channel is mostly less sensitive to activation by Ca²⁺ than is InsP₃R-3. This is because ATP decreases the Kₒ of InsP₃R-3 to a greater extent than that of InsP₃R-1, and decreases Hₛₒ of InsP₃R-3 but does not affect that of InsP₃R-1. Whereas increases of [ATP], from 0.5 to 9.5 mM continue to decrease Kₒ of the type 1 channel (Mak et al., 1999), the effects of ATP on Ca²⁺ activation of the type 3 channel are saturated at 500 μM. Thus, at 4.8 mM ATP, Pₒ of InsP₃R-1 in [Ca²⁺] > 35 nM is higher than that of InsP₃R-3, although the type 3 channel is still more active than the type 1 isoform in [Ca²⁺] < 35 nM. At 9.5 mM ATP, InsP₃R-1 is more active than InsP₃R-3 in most [Ca²⁺].

Whereas the MgATP concentration in the cytoplasm...

Ca^{2+} and inositol 1,4,5-trisphosphate (InsP$_3$) of single recombi-
nant type 3 InsP$_3$ receptor channels: Ca^{2+} activation uniquely dis-
tinguishes types 1 and 3 InsP$_3$ receptors. *J. Gen. Physiol.* 117:
435–446.

Maranto, A.R. 1994. Primary structure, ligand binding, and local-
ization of the human type 3 inositol 1,4,5-trisphosphate receptor

Meas, K., L. Missiaen, P. De Smet, G. Vanlingen, G. Callewaert, J.B.
Parys, and H. De Smedt. 2000. Differential modulation of inosi-
tol 1,4,5-trisphosphate receptor type 1 and type 3 by ATP. *Cell Cal-

Structure and expression of the rat inositol 1,4,5-trisphosphate

Missiaen, L., J.B. Parys, I. Sienaert, K. Maes, K. Kunzelmann, M. Ta-
kahashi, K. Tanzawa, and H. De Smedt. 1998. Functional proper-
ties of the type-3 InsP$_3$ receptor in 16HBE14o- bronchial mucosal

Miyakawa, T., A. Maeda, T. Yamazawa, K. Hirose, T. Kuroskale, and
M. Iino. 1999. Encoding of Ca^{2+} signals by differential expres-
18:1303–1308.

Monod, J., J. Wyman, and J.-P. Changeux. 1965. On the nature of

1990. Immunogold localization of inositol 1,4,5-trisphosphate
(InsP$_3$) receptor in mouse cerebellar Purkinje cells using three

Rizzuto, R., P. Pinton, W. Carrington, F.S. Fay, K.E. Fogarty, L.M.
Lifshitz, R.A. Tuft, and T. Pozzan. 1998. Close contacts with the
endoplasmic reticulum as determinants of mitochondrial Ca^{2+}

large-conductance Ca^{2+}-activated K$^+$ channels in high Ca^{2+}
sug-
gest a two-tiered allosteric gating mechanism. *J. Gen. Physiol.* 114:
93–124.

Satoh, T., C.A. Ross, A. Villa, S. Supattapone, T. Pozzan, S.H. Sny-
der, and J. Meldolesi. 1990. The inositol 1,4,5-trisphosphate receptor

Sienaert, I., S. Huyghe, J.B. Parys, M. Malfait, K. Kunzelmann, H.

density distribution of endoplasmic reticulum proteins and mito-
ochondria at specialized Ca^{2+} release sites in oligodendrocyte pro-

Swatton, J.E., S.A. Morris, T.J.A. Cardy, and C.W. Taylor. 1999. Type
3 inositol trisphosphate receptors in RINm5F cells are biphasi-
cally regulated by cytosolic Ca^{2+} and mediate quantal Ca^{2+} mobi-

Taylor, C.W., and D. Traynor. 1995. Calcium and inositol trisphos-

Taylor, C.W., and A. Richardson. 1991. Structure and function of

Wojcikiewicz, R.J.H., and Y. He. 1995. Type I, II and III inositol
1,4,5-trisphosphate receptor coimmunoprecipitation as evidence
for the existence of heterotetrameric receptor complexes. *Bio-

Guénet, E. Ohama, I. Fujino, A. Miyawaki, T. Furuichi, and K. Mi-
koshiba. 1994. Human inositol 1,4,5-trisphosphate type-I recep-
tor, InsP$_3$R1: structure, function, regulation of expression and

Yamamoto-Hino, M., T. Sugiyama, K. Hikichi, M.G. Mattei, K. Hase-
gawa, S. Sekine, K. Sakurada, A. Miyawaki, T. Furuichi, M. Hase-
gawa, and K. Mikoshiba. 1994. Cloning and characterization of