Multiple Modes of Calcium-induced Calcium Release in Sympathetic Neurons I: Attenuation of Endoplasmic Reticulum Ca2+ Accumulation at Low [Ca2+]\textsubscript{i} during Weak Depolarization

Meredith A. Albrecht, Stephen L. Colegrove, Jarin Hongpaisan, Natalia B. Pivovarova, S. Brian Andrews, and David D. Friel

ABSTRACT Many cells express ryanodine receptors (RyRs) whose activation is thought to amplify depolarization-evoked elevations in cytoplasmic Ca2+ concentration ([Ca2+]\textsubscript{i}) through a process of Ca2+-induced Ca2+ release (CICR). In neurons, it is usually assumed that CICR triggers net Ca2+ release from an ER Ca2+ store. However, since net ER Ca2+ transport depends on the relative rates of Ca2+ uptake and release via distinct pathways, weak activation of a CICR pathway during periods of ER Ca accumulation would have a totally different effect: attenuation of Ca2+ accumulation. Stronger CICR activation at higher [Ca2+] could further attenuate Ca2+ accumulation or trigger net Ca2+ release, depending on the quantitative properties of the underlying Ca2+ transporters. This and the companion study (Hongpaisan, J., N.B. Pivovarova, S.L. Colgrove, R.D. Leapman, and D.D. Friel, and S.B. Andrews. 2001. J. Gen. Physiol. 118:101–112) investigate which of these CICR “modes” operate during depolarization-induced Ca2+ entry in sympathetic neurons. The present study focuses on small [Ca2+]\textsubscript{i}, elevations (less than \(\sim 350 \text{ nM}\)) evoked by weak depolarization. The following two approaches were used: (1) Ca2+ fluxes were estimated from simultaneous measurements of [Ca2+]\textsubscript{i} and \(I_{\text{Ca}}\) in fura-2-loaded cells (perforated patch conditions), and (2) total ER Ca concentrations ([Ca\textsubscript{ER}]) were measured using X-ray microanalysis. Flux analysis revealed triggered net Ca2+ release during depolarization in the presence but not the absence of caffeine, and [Ca2+], responses were accelerated by SERCA inhibitors, implicating ER Ca2+ accumulation, which was confirmed by direct [Ca\textsubscript{ER}] measurements. Ryanodine abolished caffeine-induced CICR and enhanced depolarization-induced ER Ca2+ accumulation, indicating that activation of the CICR pathway normally attenuates ER Ca2+ accumulation, which is a novel mechanism for accelerating evoked [Ca2+] responses. Theory shows how such a low gain mode of CICR can operate during weak stimulation and switch to net Ca2+ release at high [Ca2+], a transition demonstrated in the companion study. These results emphasize the importance of the relative rates of Ca2+ uptake and release in defining ER contributions to depolarization-induced Ca2+ signals.

KEY WORDS: calcium signaling • endoplasmic reticulum • caffeine • ryanodine • electron probe X-ray microanalysis

INTRODUCTION

Calcium is an important signaling ion, and changes in Ca2+ concentration ([Ca2+]) regulate diverse processes in many cellular compartments. In excitable cells, depolarization-induced Ca2+ entry increases [Ca2+], leading to secondary changes in [Ca2+] within organelles such as mitochondria and ER that regulate specific Ca2+-sensitive targets within these organelles (Pozzan et al., 1994; Berridge, 1998). Although mitochondria accumulate Ca2+ in response to depolarization-evoked [Ca2+] elevations (Babcock and Hille, 1998), the ER has been described as either a Ca2+ source or sink, in some cases even in the same cell type (Friel and Tsien, 1992a; Kuba, 1994; Verkhratsky and Shmigol, 1996; Toescu, 1998).

Such disparate modes of net ER Ca2+ transport are expected to have very different effects on cytoplasmic and intraluminal Ca2+ signals, and on the processes they regulate. Nevertheless, the conditions that favor net Ca2+ uptake versus net release by the ER are not well understood. The direction of net ER Ca2+ transport depends on the relative rates of Ca2+ uptake and release via distinct transport pathways. ER Ca2+ uptake is regulated by sarco- and endoplasmic reticulum Ca ATPase (SERCA)* pumps, whereas passive Ca2+ release is regulated, at least in part, by Ca2+ release channels that are gated by elevations in [Ca2+]. When the rate of Ca2+ uptake exceeds the rate of passive Ca2+ release, the ER would act as a Ca2+ sink, whereas if the converse is true, it would act as a Ca2+ source.

*Abbreviations used in this paper: tBuBHQ, 2,5-di-((t-butyl)-1,4-hydroquinone; EDX, energy-dispersive X-ray; InsP\textsubscript{3}, di-myoinositol 1,4,5-trisphosphate; Ryr, ryanodine receptors; SERCA, sarco- and endoplasmic reticulum Ca ATPase; Tg, thapsigargin.
it would act as a Ca2+ source. One process by which depolarization-evoked Ca2+ entry is thought to trigger net ER Ca2+ release is CICR (Berridge, 1998).

The machinery required for CICR is present in a variety of neurons (for review see Kuba, 1994). For example, sympathetic neurons contain a Ca store that sequesters Ca via a thapsigargin (Tg)-sensitive uptake system and is discharged by caffeine in a ryanodine-sensitive manner (Lipscombe et al., 1988; Thayer et al., 1988; Friel and Tsien, 1992a; Friel, 1995), arguing that it expresses both SERCs and ryanodine-sensitive Ca2+ release channels, (also known as ryanodine receptors, RyRs). Observations suggesting that [Ca2+]-dependent activation of RyRs can amplify depolarization-induced [Ca2+], elevations in these and other neurons include: (1) acceleration of [Ca2+], responses in the presence of caffeine in a ryanodine-inhibitable manner (Friel and Tsien, 1992a; Usachev and Thayer, 1997); (2) slowing of [Ca2+], responses after treatment with ryanodine (Friel and Tsien, 1992a; Hua et al., 1993; Shimigol et al., 1995; Peng, 1996); (3) a supralinear relationship between the amount of Ca2+ that enters the cells during depolarization and the size of the resulting [Ca2+], elevation (Hua et al., 1993; Llano et al., 1994; Shimigol et al., 1995); and (4) facilitation of depolarization-evoked [Ca2+], responses at high [Ca2+], (Hua et al., 1993; Llano et al., 1994). The first observation implicates CICR in the presence of caffeine, but the others have been taken as support for a [Ca2+], and ryanodine-sensitive amplification system that operates even in the absence of caffeine.

Activation of a CICR pathway is usually assumed to trigger net Ca2+ release from the ER that amplifies depolarization-induced [Ca2+], elevations. However, theory indicates that even when such a pathway is present, small [Ca2+], elevations above the resting level may stimulate net Ca2+ uptake by the ER (referred to hereafter as Ca2+ accumulation). This would occur if the rate of Ca2+ uptake increases more steeply with [Ca2+], than the rate of Ca2+ release. In this case, weak activation of RyRs would increase the rate of passive Ca2+ release and, as a result, lower the rate of Ca2+ accumulation. This is an interesting mode of CICR since, like net CICR, it would tend to increase the impact of Ca2+ entry on [Ca2+], but unlike net CICR, it would occur in the context of a rise in intraluminal [Ca2+] concentration.

This and the companion study (see Hongpaisan et al., 2001, in this issue) address four fundamental questions about neuronal RyR-mediated CICR, using sympathetic neurons as a model system: (1) What organelle is responsible for CICR? (2) How does CICR contribute to changes in the intracellular distribution of Ca during weak depolarization in the absence of CICR modifiers like caffeine? (3) How do these changes vary as the stimulus-evoked rise in [Ca2+], becomes larger? (4) What are the spatiotemporal properties of CICR? This study examines the relationship between changes in [Ca2+], and [Ca\textsubscript{ER}] during weak depolarization, while the companion study (see Hongpaisan et al., 2001, in this issue) examines how stimulus-evoked changes in [Ca\textsubscript{ER}] vary with [Ca2+], and with proximity to the plasma membrane. Some of these results have been presented previously in abstract form (Albrecht and Friel, 1997; Hongpaisan et al., 1999).

MATERIALS AND METHODS

Cell Dissociation and Culture

Bullfrog sympathetic neurons were prepared as described previously (Colegrove et al. 2000a). All procedures conform to guidelines established by our Institutional Animal Care and Use Committees.

Cytosolic Calcium Measurements

To measure [Ca2+], cells were incubated with 3 μM Fura-2 AM in normal Ringer’s for 40 min at room temperature with gentle agitation followed by rinsing. The composition of normal Ringer’s was (in mM): 128 NaCl, 2 KCl, 2 CaCl\textsubscript{2}, 10 HEPES, 10 glucose, pH adjusted to 7.3 with NaOH. Fura-2 AM was dispensed from a 1-mM stock solution in DMSO containing 25% (wt/wt) pluronic F127 (BASF Corporation). Cells were then washed with normal Ringer’s and placed on the stage of an inverted microscope (Nikon Diaphot TMD) and superfused continuously (~5 ml/min). Recordings began ~20 min after washing away Fura-2 AM, permitting de-esterification of the Ca2+ indicator. With this loading procedure, there is little compartmentalization of fura-2 based on the low residual fluorescence observed after cells are diazyed with dye-free internal solution under whole-cell conditions, and the loss of fluorescence after permeabilization of the plasma membrane with digitonin (Lipscombe et al., 1988). Solution changes (~200 ms) were made using a system of microcapillaries (Drummond microcaps, 20 μl) mounted on a micromanipulator. Fluorescence measurements were performed as described in Colegrove et al. (2000a).

Voltage Clamp

Simultaneous measurements of depolarization-evoked [Ca2+], elevations and voltage-sensitive Ca2+ currents (I\textsubscript{Ca}) were made under voltage clamp in Fura-2 AM loaded cells using the perforated patch technique. Patch pipettes (1–2 MΩ) were pulled (Sutter Instruments P-97), coated with Sylgard, fire-polished, and the tips were filled with a solution containing (in mM): 125 CsCl, 5 MgCl\textsubscript{2}, 10 HEPES, pH 7.3 with CsOH. After filling tips, pipettes were back-filled with the same solution supplemented with amphotericin B dispensed from concentrated aliquots (12 mg/100 μl DMSO) to give a final concentration of 480 μg/ml. After they were prepared, amphotericin B-containing internal solutions were kept on ice and used within 2 h. Upon achieving a high resistance seal, series resistance declined over 5–10 min to <10 MΩ. Cells were exposed to an extracellular solution containing (in mM): 130 TEACl, 10 HEPES, 10 glucose, 2 CaCl\textsubscript{2}, 1 MgCl\textsubscript{2}, pH 7.3 with TEAOH. Currents were measured with an Axopatch 200A voltage clamp (Axon instruments) using series resistance compensation (~90%) and were filtered at 5 kHz. Cells were held at ~70 mV and depolarized to ~−35 mV while current and fluorescence intensity were measured at 5 kHz for 0.2 s before and after changes in voltage, and at 4–5 Hz otherwise and saved on a laboratory computer. Currents were corrected for a linear leak based on responses to small hyperpolarizing voltage steps.
Measurement of [Ca]_{ER}

Total Ca concentrations within structurally identified cisternae of ER ([Ca]_{ER}) were measured by energy-dispersive X-ray (EDX) microanalysis of freeze-dried cryosections obtained from rapidly frozen ganglia, as described previously (Pozzo-Miller et al., 1997; Piovorova et al., 1999). In brief, dispersed ganglia were frozen by impact against a LN_{2}-cooled metal block (modified Life Cell CF100); subsequently, cryosections were prepared (nominal thickness ~80 nm) and analyzed using instrumentation described in the companion paper (see Hongpaisan et al., 2001, in this issue). For each experimental condition, individual [Ca]_{ER} measurements were taken from random somatic regions from multiple cells and averaged, so that the concentrations reported should closely approximate true spatial averages. A probe size of 63 nm was used; smaller probes yielded essentially similar results, confirming that this probe was adequate to determine ER content without contamination from adjacent cytosol. Measurements are given in units of millimoles per kilogram dry weight, from which estimated concentrations in millimoles per liter of hydrated tissue are obtained after multiplying by the estimated ratio of dry weight to total wet weight within the ER (~0.28; Pozzo-Miller et al., 1997). Resting [Ca]_{ER} was measured in cells from ganglia that were incubated in normal Ringer’s, and depolarization-induced changes in [Ca]_{ER} were measured after transferring ganglia to 30 mM K⁺Ringers (equimolar substitution for Na⁺) for 45 or 120 s. To assess the effect of ryanodine on resting [Ca]_{ER}, ganglia were transferred to normal Ringer’s plus 1 μM ryanodine supplemented with 10 mM caffeine; after five minutes, ganglia were transferred to normal Ringers plus 1 μM ryanodine without caffeine for one additional minute before rapid freezing. Measurements of depolarization-evoked changes in [Ca]²⁺, in fura-2-loaded cultured cells show that this protocol is sufficient to inhibit caffeine-induced [Ca]²⁺ transients and modify depolarization-induced [Ca]²⁺ elevations (not shown). Effects of ryanodine on evoked changes in [Ca]_{ER} were assessed by treating ganglia with ryanodine as described above and then exposing them to 30 K⁺ in the presence of ryanodine.

Measurement of Ca²⁺ Fluxes

The Ca²⁺ fluxes responsible for changes in [Ca]²⁺, during and after depolarization-evoked Ca²⁺ entry were determined based on simultaneous measurements of [Ca]²⁺, and I_{Ca}. The total Ca²⁺ flux (J_{total}) and the component of J_{total} representing Ca²⁺ entry through voltage-sensitive Ca²⁺ channels (J_{v}) were estimated as described below. These measurements made it possible to estimate the net Ca²⁺ flux (J_{n}) representing the combined activity of all other Ca²⁺ transport systems, including Ca²⁺ extrusion across the plasma membrane and uptake and release by organelles such as the ER and mitochondria. The sign of J_{n} provides information about Ca²⁺ release from intracellular stores: when J_{n} is negative, the rate of net Ca²⁺ release exceeds the combined rate of Ca²⁺ clearance; when J_{n} is positive, net Ca²⁺ release, if it occurs, must be slower than Ca²⁺ clearance.

The total cytosolic Ca²⁺ flux per unit volume was measured (J_{total} in nanomolars per second) by taking the time derivative of [Ca]²⁺, at each sample time t, during the period of low frequency sampling according to (([Ca]²⁺)(t + Δt/2) - [Ca]²⁺)(t - Δt/2))/Δt, where Δt (400–500 ms) is twice the sampling interval. During the periods of high frequency sampling immediately after depolarization and repolarization, the flux was determined by using the slope of a fitted exponential function. Before calculating the fluxes, the [Ca]²⁺ measurements were smoothed four to five times with a binomial filter. J_{total} was dissected into two components representing the rate of Ca²⁺ entry through voltage-sensitive Ca²⁺ channels (J_{v}) and the composite net flux representing transport by all other systems, J_{v} = J_{total} - J_{v}. J_{w} is the rate of Ca²⁺ entry per unit cytoplasmic volume divided by the ratio (k_{f}²) of changes in total cytoplasmic Ca concentration (bound plus free) that accompany small changes in [Ca]²⁺, (Neher and Augustine, 1992; Colegrove et al., 2000a). The rate of Ca²⁺ entry per unit cytoplasmic volume was calculated from I_{Ca}/2F_{v}, where F is the Faraday constant and v is the cytoplasmic volume estimated from the measured membrane capacitance assuming hemispherical geometry to approximate the shape of adherent cells. To estimate k_{f}², it was reasoned that during the initial moments following depolarization, before [Ca]²⁺, has changed sufficiently to perturb basal Ca²⁺ transport, [Ca]²⁺, should rise at a rate that depends only on the rate of Ca²⁺ entry, the cytosolic volume, and k_{f}². Accordingly, k_{f}² was estimated as the average ratio of I_{Ca}/2F_{v} to J_{tot} during the early period of depolarization (from 0.24 to 1.00 s). During this time, J_{tot} was insensitive to pharmacological interventions that dramatically modified Ca²⁺ transport by the caffeine-sensitive store (see Fig. 2 C, compare left and right panels, and Fig. 4 A and B), indicating that it is dominated by Ca²⁺ entry. As expected, reducing the intracellular fura-2 concentration (by reducing loading times) systematically lowered k_{f}² and increased the magnitudes of J_{ICa}/2F_{v} and J_{w}. However, this did not change the signs of these fluxes, indicating that Ca²⁺ buffering by fura-2 did not influence the direction of J_{2}. **Pharmacological Manipulation of CICR**

Ryanodine was used as a tool to evaluate how CICR contributes to stimulus-evoked [Ca]²⁺ elevations. At low concentrations (~1 μM), ryanodine inhibits Ca²⁺-dependent RyR channel gating and increases channel open probability. At high concentrations (~100 μM), it causes channel block (for reviews see Coronado et al., 1994; Berridge et al., 1995; Suitko et al., 1997; Zanchi and Roncha-Testoni, 1997). To inhibit CICR, cells were exposed to ryanodine (1 μM) and transiently to caffeine (10 mM) in the continued presence of ryanodine. Under these conditions, caffeine elicits a transient rise in [Ca]²⁺, like that observed in control cells, but unlike control cells, responsiveness to caffeine is not restored after caffeine is removed (Thayer et al., 1988). Caffeine opens RyRs by increasing their sensitivity to [Ca]²⁺, (Rousseau et al., 1988), and ryanodine is thought to inhibit caffeine responsiveness by irreversibly modifying RyRs so that they are insensitive to Ca²⁺ (Rousseau et al., 1987) or have greatly increased Ca²⁺ sensitivity (Chen et al., 2001). Ryanodine was used in conjunction with caffeine because ryanodine preferentially interacts with the open channel, causing ryanodine-induced RyR modifications to be use-dependent.

Simulations

Rate equations describing Ca²⁺ extrusion across the plasma membrane (Colegrove et al., 2000b) and Ca²⁺ uptake and release by the ER were incorporated into a system of differential equations (see Appendix) that was solved numerically using a fourth-order Runge-Kutta routine (Boyce and DiPrima, 1969) written in Igor Pro (Wavemetrics, Inc.). Step size was 50 ms; further reductions in step size did not noticeably alter the results.

Reagents and Data Analysis

Fura-2 AM was obtained from Molecular Probes, ryanodine was obtained from RBI, t-BuBHQ was purchased from Calbiochem, and unless indicated otherwise, all other compounds were obtained from Sigma-Aldrich. Population results are expressed as mean ± SEM and statistical significance was assessed using t test.
R E S U L T S

Modulation of Depolarization-evoked \([\text{Ca}^{2+}]\), Responses by the Caffeine-sensitive Store

Fig. 1 shows \([\text{Ca}^{2+}]\), responses elicited under three different conditions illustrating how the caffeine-sensitive store can influence the impact of \([\text{Ca}^{2+}]\) entry on \([\text{Ca}^{2+}]\). Experiments were performed under voltage clamp (perforated patch conditions) so that components of the total \([\text{Ca}^{2+}]\) flux representing \([\text{Ca}^{2+}]\) entry and \([\text{Ca}^{2+}]\) transport by other systems could be distinguished (see next section). Recordings were made using a test potential (−35 mV) close to the membrane potential established during exposure to 30 mM \(K^+\) to facilitate comparison with previous results obtained using this \(K^+\) concentration to stimulate \([\text{Ca}^{2+}]\) entry (Friel and Tsien, 1992a). We first show how net \([\text{Ca}^{2+}]\) transport by the store can influence depolarization-evoked \([\text{Ca}^{2+}]\), responses under conditions that favor net \([\text{Ca}^{2+}]\) release or \([\text{Ca}^{2+}]\) accumulation. Flux measurements are then described that provide information about CICR under control conditions and when it is modified by caffeine.

During membrane depolarization, \([\text{Ca}^{2+}]\), rises toward a steady level (Fig. 1, Control 1) and recovers after repolarization. Subsequent exposure to caffeine elicits a large \([\text{Ca}^{2+}]\), transient reflecting \([\text{Ca}^{2+}]\) release from an intracellular store (Friel and Tsien, 1992a). Several observations provide information about the mechanisms of \(\text{Ca}^{2+}\) uptake and release by this store. Caffeine is ineffective after treatment with the SERCA inhibitors thapsigargin (Tg > 20 nM), 2,5-di-(t-butyl)-1,4-hydroquinone (t-BuBHQ, 10–100 \(\mu\text{M}\)); cyclopiazonic acid (100 \(\mu\text{M}\); unpublished data), each of which elicits a transient \([\text{Ca}^{2+}]\), rise in the absence of extracellular \(\text{Ca}^{2+}\), indicating that \(\text{Ca}^{2+}\) uptake by the store requires SERCA activity. Caffeine is also ineffective after treatment with ryanodine (Thayer et al., 1988; Friel and Tsien, 1992a), arguing that RyRs serve as the caffeine-sensitive \(\text{Ca}^{2+}\) release pathway. Evidence will be presented in the accompanying study directly demonstrating that the caffeine-sensitive store is the ER.

When cells are depolarized in the continued presence of caffeine (Fig. 1, +Caff), \([\text{Ca}^{2+}]\), responses are dramatically amplified, showing an accelerated onset leading to a prominent \([\text{Ca}^{2+}]\), spike. The recovery that follows repolarization is also accelerated compared with the control response. Two observations suggest that amplification is caused by \(\text{Ca}^{2+}\)-induced release: (1) it is not observed after treatment with ryanodine (1 \(\mu\text{M}\); Friel and Tsien, 1992a); and (2) in the presence of caffeine, the total \(\text{Ca}^{2+}\) flux elicited by depolarization consists of two kinetically distinct components. One component resembles the flux elicited by depolarization in the absence of caffeine, whereas the other resembles the flux underlying caffeine-induced \(\text{Ca}^{2+}\) release (Friel and Tsien, 1992b; Usachev and Thayer, 1997).

When caffeine is washed out, the store refills at a rate that depends on the availability of cytosolic \(\text{Ca}^{2+}\) and the rate of net \(\text{Ca}^{2+}\) entry across the plasma membrane (Friel and Tsien, 1992a). If cells are depolarized during this period of replenishment (Post-caff), the rise in \([\text{Ca}^{2+}]\), is much slower than the control, even though the underlying \(\text{Ca}^{2+}\) current is similar (not shown). Evidence has been presented previously (Friel and Tsien, 1992a) that the onset is slow because a portion of the \(\text{Ca}^{2+}\) entering through \(\text{Ca}^{2+}\) channels is taken up by the store as it refills. After allowing sufficient time for store replenishment, a final depolarization elicits a \([\text{Ca}^{2+}]\),
response (Fig. 1, Control 2) resembling the first control response. These observations are representative of four cells studied under voltage clamp and are consistent with previous results obtained from cells depolarized with 30 mM K+ (Friel and Tsien, 1992a). Thus, in the presence of caffeine, Ca\(^{2+}\) release via a ryanodine-sensitive pathway can amplify depolarization-induced [Ca\(^{2+}\)], elevations; conversely, after being discharged, Ca\(^{2+}\) accumulation by the store can attenuate these responses (see diagrams, Fig. 1, bottom).

How does the caffeine-sensitive store contribute to [Ca\(^{2+}\)]\(_{i}\) dynamics when Ca\(^{2+}\) transport is not modified by caffeine? It has been proposed that in these and other neurons, depolarization-induced [Ca\(^{2+}\)], responses are amplified by CICR, even in the absence of caffeine. The main goal of the present study was to evaluate this possibility in a weak stimulus regime where [Ca\(^{2+}\)], is low (less than \(~\sim 350\) nM). The companion study (see Hongpaisal et al., 2001, in this issue) examines the case where stronger stimuli raise [Ca\(^{2+}\)]\(_{i}\) to progressively higher levels.

Components of the Total Cytosolic Ca\(^{2+}\) Flux

[Ca\(^{2+}\)]\(_{i}\), rises during depolarization and declines after repolarization because there is a net cytoplasmic Ca\(^{2+}\) flux: inward during the onset and outward during the recovery. At each instant in time, this flux depends on the rate of stimulated Ca\(^{2+}\) entry and on the rate of endogenous Ca\(^{2+}\) transport representing, at a minimum, Ca\(^{2+}\) extrusion across the plasma membrane, and Ca\(^{2+}\) uptake and release by the ER and mitochondria. Given a measurement of the total Ca\(^{2+}\) flux and the rate of stimulated Ca\(^{2+}\) entry, the endogenous net flux can be estimated. Based on the sign of this flux, it is possible to place limits on the relative rates of net Ca\(^{2+}\) release from the caffeine-sensitive store and Ca\(^{2+}\) clearance by other transport systems.

The total cytosolic Ca\(^{2+}\) flux (J\(_{\text{total}}\), measured in nanomolars/second) can be determined at each instant in time by measuring the time derivative of [Ca\(^{2+}\)]\(_{i}\); this gives the rate at which Ca\(^{2+}\) leaves or enters the cytosol (e.g., in nanomoles/second) divided by the cytosolic volume and a buffering factor (\(K_1\), see MATERIALS AND METHODS). J\(_{\text{total}}\) can be separated into two components representing the net Ca\(^{2+}\) flux through voltage-sensitive Ca\(^{2+}\) channels (J\(_{\text{ICa}}\)), and the composite net flux representing endogenous Ca\(^{2+}\) transport (J\(_{\text{E}}\)). J\(_{\text{ICa}}\) was calculated from the measured Ca\(^{2+}\) current (I\(_{\text{Ca}}\)), the estimated cytosolic volume, and \(K_1\) as described in MATERIALS AND METHODS, whereas J\(_{\text{E}}\) was calculated from J\(_{\text{total}}\) - J\(_{\text{ICa}}\). By convention, inward fluxes that raise [Ca\(^{2+}\)]\(_{i}\) are negative and outward fluxes that lower [Ca\(^{2+}\)]\(_{i}\) are positive.

Fig. 2 illustrates how the interplay between J\(_{\text{ICa}}\) and J\(_{\text{E}}\) defines J\(_{\text{total}}\) during and after weak depolarization before (left) and during (right) exposure to 5 mM caffeine from an experiment like that illustrated in Fig. 1. In the absence of caffeine (left column), depolarization elicits an inward Ca\(^{2+}\) current (B) causing [Ca\(^{2+}\)], to rise (C) toward a nearly steady level. Fig. 2 D shows the time courses of J\(_{\text{total}}\) and its components during and after depolarization. During depolarization, J\(_{\text{total}}\) (Fig. 2 D, triangles) is an inward flux whose magnitude increases rapidly and then declines toward zero as [Ca\(^{2+}\)], approaches a steady level of ~250 nM. After repolarization, J\(_{\text{total}}\) rapidly becomes an outward flux and then declines toward zero as [Ca\(^{2+}\)], approaches its prestimulation level.

The temporal properties of J\(_{\text{total}}\) are defined by the interplay between J\(_{\text{ICa}}\) and J\(_{\text{E}}\). The initial negative-going deflection of J\(_{\text{total}}\) after depolarization reflects rapid activation of J\(_{\text{ICa}}\) (continuous curve), whereas the later decay reflects the slow development of an opposing outward flux (J\(_{\text{E}}\), circles) that nearly balances J\(_{\text{ICa}}\) by the end of the depolarization, accounting for the decline in J\(_{\text{total}}\) and the approach of [Ca\(^{2+}\)], to a steady value. Importantly, J\(_{\text{E}}\) is positive under these conditions of stimulation, indicating that if the stimulus triggers net Ca\(^{2+}\) release from the caffeine-sensitive store, the rate of release must be slower than the rate of Ca\(^{2+}\) clearance by all other transport systems. Following repolarization, Ca\(^{2+}\) channel deactivation causes J\(_{\text{ICa}}\) to fall rapidly to zero, unmasking the outward flux J\(_{\text{E}}\) that causes [Ca\(^{2+}\)], to decline.

Fig. 2 E plots J\(_{\text{total}}\) versus [Ca\(^{2+}\)], during the response onset and recovery, showing the abrupt negative-going transition that follows depolarization (“On” arrow) and the decline to zero as [Ca\(^{2+}\)], approaches a new steady level after depolarization, as well as the abrupt positive-going transition after repolarization (“Off” arrow) followed by a decline to zero as [Ca\(^{2+}\)], returns to its prestimulation value. Fig. 2 F plots J\(_{\text{E}}\) against [Ca\(^{2+}\)], showing that this flux depends weakly on [Ca\(^{2+}\)], and for a given [Ca\(^{2+}\)], level, has similar values during the onset and recovery, indicating that J\(_{\text{E}}\) and the collective activity of the underlying transporters, do not depend strongly on I\(_{\text{Ca}}\) or voltage.

In the presence of caffeine (Fig. 2, right column), the Ca\(^{2+}\) fluxes underlying the [Ca\(^{2+}\)], response are strikingly different. Although initially J\(_{\text{total}}\) resembles the control flux, it becomes an explosively increasing inward flux, reaching nearly \(~70\) nM/s after which it declines and changes sign to become a transient outward flux before finally approaching zero. The large transient inward flux is responsible for the upstroke and overshoot during the [Ca\(^{2+}\)], response, and the transient outward flux is responsible for the [Ca\(^{2+}\)], decay from its peak to the steady level. The complex kinetics of J\(_{\text{total}}\) cannot be explained by caffeine-induced changes in J\(_{\text{ICa}}\) since this flux is similar to the control flux, except for a small but consistent depression when...
CICR Attenuates ER Ca Accumulation

[Ca\(^{2+}\)]_i is highest. This depression may represent [Ca\(^{2+}\)]_i-dependent inhibition of I_{Ca}, a contaminating outward current carried by Cs\(^{+}\) through incompletely blocked Ca\(^{2+}\)-activated K\(^{+}\) channels, or a combination of the two. Caffeine did not systematically influence the impact of I_{Ca} on J_{total} during the initial period of depolarization: \(\frac{J_{i}}{J_{k}} = 263.5 \pm 31.4 \) in the presence of caffeine and 244.2 \pm 38.8 in the control (four cells, NS).

The temporal properties of \(J_{k} \) account for the complicated dynamics of \(J_{total} \) and \[Ca^{2+}\]_i during depolarization in the presence of caffeine. \(J_{k} \) consists of a large, inward spike, a transient outward component, and a steady-state component similar to that seen in the absence of caffeine. Since \(J_{k} \) is negative during the upstroke of the \[Ca^{2+}\]_i spike, the rate of Ca\(^{2+}\) release must exceed the rate of Ca\(^{2+}\) clearance, and therefore the rise in \[Ca^{2+}\]_i would be expected to continue even if the cell were repolarized during this phase of the response (Usachev and Thayer, 1997). When repolarization occurs after \[Ca^{2+}\]_i, stabilizes and \(J_{k} \) is positive, \[Ca^{2+}\]_i declines toward the prestimulation level. \(J_{total} \) and \(J_{k} \) are plotted against \[Ca^{2+}\]_i for comparison with the control response (Fig. 2, E and F, right). In the presence of caffeine, \(J_{k} \) follows a continuous trajectory without abrupt changes in magnitude at the instants of depolarization and repolarization. This argues that in the presence of caffeine, as in the control, \(J_{k} \) is not very sensitive to voltage but is controlled by other variables, such as \[Ca^{2+}\]_i and the free Ca concentration within the caffeine-sensitive store. Since \(J_{k} \) follows a trajectory during and after depolarization like
that followed by J_{total} during caffeine-induced Ca2+ release (Friel and Tsien, 1992b), it appears that the component of J_{total} responsible for response amplification in the presence of caffeine is similar to the flux responsible for caffeine-induced Ca2+ release, namely, CICR. Similar results were obtained in each of four cells using the same stimulus protocol.

To summarize, depolarization elicits a rise in [Ca2+], whose temporal properties reflect the interplay between voltage-sensitive Ca2+ entry and a composite net Ca2+ flux representing all other functional Ca2+ transport pathways. Under control conditions, the composite flux is outwardly directed, opposes the effects of Ca2+ entry on [Ca2+], shows little or no hysteresis, and is kinetically simple. In the presence of caffeine, the composite flux is biphasic, amplifies the effects of Ca2+ entry, shows strong hysteresis, and consists of a rapid transient inward component followed by a transient outward component, having an overall trajectory resembling J_{total} after exposure to caffeine, even though the proximal stimulus is membrane depolarization, not caffeine. These observations lead to our first two important conclusions. First, when Ca2+ entry is stimulated in the presence of caffeine (5 mM), net Ca2+ release from the store occurs at a sufficiently high rate that it overwhelms available Ca2+ clearance systems, causing J_{X} to be an inward net flux. Second, if Ca2+ entry triggers net Ca2+ release from the store in the absence of caffeine, the rate of release must be less than the rate of Ca2+ clearance by other transport systems; otherwise, J_{X} would be an inward flux.

During Weak Depolarization, the Caffeine-sensitive (ER) Store Accumulates Calcium

Does the caffeine-sensitive store release net Ca2+ in response to depolarization-induced Ca2+ entry in the absence of caffeine? To examine this point, cells were depolarized before and after treatment with thapsigargin (Tg), which discharges the caffeine-sensitive store and elicits a transient [Ca2+], rise in these cells (Friel, 1995). If Ca2+ entry normally triggers net Ca2+ release, then after Tg treatment and depletion of the store, Ca2+ entry should elicit a [Ca2+], rise that is slower than the control. Just the opposite was observed: depolarization-evoked [Ca2+], elevations were faster after Tg (Fig. 3 A, top). This was quantified by calculating the time for [Ca2+], to rise from 20–80% of its peak value during depolarization, which after Tg treatment was reduced to 67 ± 8% of the control value ($n = 10$, $P < 0.005$). Acceleration of the depolarization-induced [Ca2+], responses could not be explained by Tg-induced enhancement of I_{Ca} (Fig. 3 A, bottom).

Treatment with Tg similarly modified [Ca2+], responses elicited by 30 mM K+ depolarization (Fig. 3 B), leading to a reduction in the 20–80% rise time to 74%
of the control value \((n = 9, P < 0.05)\). After Tg treatment, some cells exhibited a plateau during the recovery (Fig. 3 B). The plateau appears to reflect Ca\(^{2+}\) release from mitochondria that become loaded during depolarization because it is not observed under conditions where mitochondrial Ca\(^{2+}\) release via the Na\(^+/\)Ca\(^{2+}\) exchanger is inhibited, e.g., during exposure to CGP 37157 (3/3 cells, not shown; Colegrove et al., 2000a) or under voltage clamp using pipette solutions that lack Na\(^+\) (Fig. 3 A), or in cells that respond to weak depolarization with small [Ca\(^{2+}\)], elevations (less than \(\sim 250\) nM; see Fig. 4 A) that should be relatively ineffective in stimulating mitochondrial Ca\(^{2+}\) accumulation (Colegrove et al., 2000a). One possible explanation is that by inhibiting ER Ca\(^{2+}\) accumulation and accelerating the rise in [Ca\(^{2+}\)]\(_i\), Tg enhances the period during which [Ca\(^{2+}\)], is at levels that support stronger mitochondrial Ca\(^{2+}\) uptake, leading to increased loading and a more prominent plateau during the recovery.

These results suggest that the caffeine-sensitive pool accumulates Ca\(^{2+}\) when [Ca\(^{2+}\)], is elevated during weak depolarization. This was demonstrated directly by measuring [Ca\(_{\text{ER}}\)] before and after exposure to 30 mM K\(^+\) by EDX microanalysis (Fig. 3 B, inset). [Ca\(_{\text{ER}}\)] was increased significantly from its resting value during a 2 min exposure to 30 mM K\(^+\); the increase corresponds to a rise from \(\sim 3.6\) to \(\sim 4.8\) mmol/liter wet tissue. No change in [Ca\(_{\text{ER}}\)] was detected at 45 s, possibly because average [Ca\(_{\text{ER}}\)] measurements before and after stimulation were necessarily performed in different cell populations, whereas ratios of 20–80% rise times were determined in individual cells and then averaged. As a result, [Ca\(_{\text{ER}}\)] comparisons are more sensitive to cell-to-cell variability. A possibility that is consistent with our data is that [Ca\(_{\text{ER}}\)] rises continuously during weak depolarization, being large enough at 120 s to be distinguished from basal [Ca\(_{\text{ER}}\)] measurements in a different cell population, but not at 45 s. Simulations supporting this possibility are presented below (see Fig. 5 A, third panel from top).

To summarize, our results indicate that Ca\(^{2+}\) accumulation by the ER reduces the total cytoplasmic Ca\(^{2+}\) flux during periods of Ca\(^{2+}\) entry and slows depolarization-evoked [Ca\(^{2+}\)], elevations in a Tg-sensitive manner (Fig. 3 A, top, diagrams). This leads to our third important conclusion: if a ryanodine-sensitive CICR pathway is activated by the small [Ca\(^{2+}\)], elevations elicited during weak depolarization, the rate at which Ca\(^{2+}\) is released by this pathway must be slower than the rate of Ca\(^{2+}\) uptake.

Ryanodine Slows Depolarization-evoked [Ca\(^{2+}\)], Elevations by Enhancing ER Ca Accumulation

The results presented so far indicate that when [Ca\(^{2+}\)], rises to levels below \(\sim 350\) nM during weak depolarization, the caffeine-sensitive store accumulates Ca. Nevertheless, [Ca\(^{2+}\)], responses elicited by such stimuli are sensitive to ryanodine in a way that implicates the activation of a CICR pathway. After treatment with ryanodine, caffeine-induced Ca\(^{2+}\) release is inhibited and stimulus-induced [Ca\(^{2+}\)], elevations are slowed (Fig. 4 A; also see Friel and Tsien, 1992a), showing a 264 ± 21% increase in the 20–80% rise time compared with control responses in the same cells (21 cells). Slower [Ca\(^{2+}\)], elevations would account for the observation that responses induced by brief stimuli are smaller after treatment with ryanodine (Hua et al., 1993; Shmigol et al., 1995; Peng, 1996; Sandler and Barbara, 1999). At the concentrations used, ryanodine does not inhibit voltage-sensitive Ca\(^{2+}\) currents or change the initial rate at which [Ca\(^{2+}\)], rises after depolarization (Friel and Tsien, 1992a; Fig. 4 A, bottom, inset). Moreover, ryanodine has no detectable effect after treatment with Tg (5/5 cells), indicating that it specifically influences Ca\(^{2+}\) transport by a Tg-sensitive pool. One possible explanation for the slower [Ca\(^{2+}\)], elevations observed after treatment with ryanodine is that depolarization normally triggers net Ca\(^{2+}\) release, and that by increasing the Ca\(^{2+}\) permeability of the ER, ryanodine depletes the store, thereby preventing net Ca\(^{2+}\) release. However, this is incompatible with the observation described above that the store accumulates Ca\(^{2+}\) during weak depolarization. Another possibility is that ryanodine prevents Ca\(^{2+}\)-dependent activation of a CICR pathway that normally accelerates depolarization-induced [Ca\(^{2+}\)], elevations, but the same observations preclude net CICR. How can these findings be explained?

Interpretation of the kinetic effects of ryanodine on depolarization-evoked [Ca\(^{2+}\)], elevations requires information about how this compound modifies Ca\(^{2+}\) handling by the ER in these experiments. It has been shown previously that at high concentrations (≥10 μM), ryanodine enhances Ca\(^{2+}\) accumulation by cardiac sarcoplasmic reticulum in a way that is consistent with a reduction in sarcoplasmic reticulum Ca\(^{2+}\) permeability (Jones et al., 1979; Sutko et al., 1997). If ryanodine slows depolarization-induced [Ca\(^{2+}\)], elevations in sympathetic neurons by a similar mechanism, then Tg should overcome this effect, causing responses to be faster than the controls (Fig. 3). Alternatively, if ryanodine renders the ER so leaky that Ca\(^{2+}\) becomes passively distributed between the ER and cytoplasm, active Ca\(^{2+}\) accumulation could not occur and Tg would have no additional effect. Fig. 4 A (bottom) compares the [Ca\(^{2+}\)], responses from A (top) with a subsequent response elicited from the same cell after treatment with Tg in the continued presence of ryanodine. After Tg, the rise in [Ca\(^{2+}\)], was greatly accelerated, with the 20–80% rise time falling to 36 ± 4% of that observed after treatment with ryanodine in the same cells (n = 21). Acceleration of the [Ca\(^{2+}\)], rise does not reflect drug-induced changes in \(I_{\text{Ca}}\) (Fig. 4 B); in the example
shown, \([\text{Ca}^{2+}]_i\) rises more rapidly after Tg treatment despite partial rundown of \(I_{\text{Ca}}\) during the period between depolarizations. To test directly if ryanodine increases the rate of ER Ca accumulation during stimulation, a comparison was made between \([\text{Ca}^{2+}]_i\) after a 45-s exposure to 30 mM K\(^+\) in control and ryanodine-treated cells. Although depolarization of this duration did not change \([\text{Ca}^{2+}]_i\) detectably in control cells (Fig. 4 C, compare first and second bars), it increased \([\text{Ca}^{2+}]_i\) twofold in ryanodine-treated cells (Fig. 4 C, compare third and fourth bars), demonstrating that ryanodine increases the average rate of ER Ca accumulation during stimulation.

Is enhanced Ca accumulation a consequence of reduced ER Ca\(^{2+}\) permeability? Such an effect by itself would cause basal \([\text{Ca}^{2+}]_\text{ER}\) to increase, but a ~63% reduction was observed (from 12.8 ± 0.9 to 4.7 ± 1.1 mmol/kg dry weight, \(P < 0.001\); see Fig. 4 C, compare first and third bars). To determine if ryanodine lowers the resting \([\text{Ca}^{2+}]_\text{ER}\) level by reducing the basal rate of ER Ca\(^{2+}\) uptake, the initial rate at which \([\text{Ca}^{2+}]_i\) rises after rapid application of the reversible SERCA inhibitor t-BuBHQ was measured before and after treatment with ryanodine (Fig. 4 D and E). Before ryanodine, t-BuBHQ elicits a transient \([\text{Ca}^{2+}]_i\) elevation that reflects Ca\(^{2+}\) release from an intracellular store; such transients
are not observed after treatment with Tg, arguing that Tg and t-BuBHQ deplete the same store (not shown). The abrupt rise in \([Ca^{2+}]\), that follows t-BuBHQ application indicates that, under resting conditions, ongoing \(Ca^{2+}\) uptake via SERCAs is balanced by passive \(Ca^{2+}\) release (Fig. 4 E, see diagrams). The initial rate of rise after SERCA inhibition provides a measure of the basal rate of release, as well as the rate of uptake that balances release under resting conditions. After treatment with ryanodine, t-BuBHQ also elicits a \([Ca^{2+}]\), transient (Fig. 4 D), indicating that there is still a gradient favoring passive \(Ca^{2+}\) release, but the transient is smaller and shorter in duration than the control, as expected given the lower basal \([Ca]_{ER}\). Nonetheless, the initial rate of rise is unchanged (Fig. 4, D and E; 5/5 cells), indicating that ryanodine does not alter the resting rate of \(Ca^{2+}\) uptake or release. Since ryanodine lowers resting \([Ca]_{ER}\) (and presumably the free Ca concentration within the ER, \([Ca^{2+}]_{ER}\) without altering the basal release rate, it must increase the resting ER \(Ca^{2+}\) permeability, defined as (release rate)/\([Ca^{2+}] - [Ca^{2+}]_{ER}\). This is the opposite of the high concentration effect of ryanodine described previously (Jones et al., 1979) but is precisely the result expected if, in addition to preventing \(Ca^{2+}\)-dependent RyR channel activation, ryanodine increases basal channel open probability.

These observations lead to the fourth important conclusion of this study. Since the ER normally accumulates \(Ca^{2+}\) when \([Ca^{2+}]\) is elevated during weak depolarization, and inhibition of a ryanodine-sensitive CICR pathway increases the rate of ER Ca accumulation, activation of this pathway must normally attenuate \(Ca^{2+}\) accumulation by the ER. This is an interesting mechanism, since it would involve \(Ca^{2+}\)-induced \(Ca^{2+}\) release at the level of a population of RyRs, providing a \([Ca^{2+}]\)-sensitive pathway for passive \(Ca^{2+}\) release from the ER that accelerates evoked \([Ca^{2+}]\) elevations, but in a capacity that downregulates ER \(Ca^{2+}\) accumulation.

Simulations Based on a Model of CICR Operating in a Low Gain Mode

To determine if activation of a CICR pathway could, in principle, attenuate ER \(Ca^{2+}\) accumulation and accelerate depolarization-evoked \([Ca^{2+}]\) responses, simulations were performed based on a model of \(Ca^{2+}\) regulation (Friel, 1995) that includes two compartments representing the cytoplasm and ER containing \(Ca^{2+}\) at concentrations \(c_i\) and \(c_{ER}\), respectively. This model assumes that \(Ca^{2+}\) is distributed uniformly within each compartment, an approximation that becomes increasingly valid as the rate of stimulated \(Ca^{2+}\) entry becomes slow enough that the rate of \(Ca^{2+}\) transport between compartments is slow compared with diffusion within compartments. Also, mitochondria are not explicitly included to facilitate analysis of the impact of a CICR pathway on net \(Ca^{2+}\) transport by an intracellular pool. Although this approximation leads to results that agree with the experiment only when \([Ca^{2+}]\) is low and mitochondrial \(Ca^{2+}\) transport is weak, the conclusions reached below regarding the \([Ca^{2+}]\) dependence of net ER \(Ca^{2+}\) transport are expected to apply generally (see discussion).

In the model, \(Ca^{2+}\) extrusion across the plasma membrane is represented by an experimentally determined rate equation (Colegrove et al., 2000b; see Appendix), \(Ca^{2+}\) uptake by the store is controlled by a saturable pump, and the rate of passive \(Ca^{2+}\) release is the product of the total \(Ca^{2+}\) permeability of the store (\(P_{ER}\)) and a driving force \((c_i - c_{ER})\). The permeability is the sum of a constant basal component (\(P_{basal}\)) and a \([Ca^{2+}]\)-sensitive component (with maximal value \(P_{max,RyR}\)) that is intended to represent the macroscopic permeability conferred upon the store by a population of channels (e.g., RyR's) whose open probabilities increase with \([Ca^{2+}]\), but do not have explicit time dependence. The parameter values defining the uptake and release pathways are estimates based on our observations in sympathetic neurons (unpublished data) but the general conclusions that follow hold over a range of parameter values.

Fig. 5 A illustrates responses to \(Ca^{2+}\) entry simulated under four different conditions for comparison with experiments described above. Under control conditions (Cont), \(Ca^{2+}\) entry (Fig. 5 A, first panel) leads to a rise in \(c_i\) (second panel) that causes \(Ca^{2+}\) accumulation. After suppressing \(Ca^{2+}\) uptake to represent the effects of Tg, \(Ca^{2+}\) accumulation is abolished and \(c_i\) rises more rapidly, as observed experimentally. After blocking \(Ca^{2+}\)-induced increases in permeability and raising the basal permeability of the store to model the effects of ryanodine, \(Ca^{2+}\) entry leads to a slower \(c_i\) rise but a more robust increase in \(c_{ER}\) from a lower basal level, which is also in agreement with experiments described above. Finally, after increasing the strength and \(c_i\) sensitivity of the release pathway to model the effects of caffeine (Fig. 5 A, bottom panel), \(c_i\) rises more rapidly in response to the same stimulus, and \(c_{ER}\) declines, consistent with the observed effects of caffeine on depolarization-induced \([Ca^{2+}]\) responses. Thus, the simple model accounts for the main observations in this study and illustrates how weak activation of a CICR pathway, operating in parallel with a \(Ca^{2+}\) uptake system, could accelerate depolarization-evoked \([Ca^{2+}]\) elevations by reducing the rate at which the store accumulates \(Ca^{2+}\).

Fig. 5 B shows how the dynamics of \(c_i\) and \(c_{ER}\) change as the stimulus strength is increased when the \(Ca^{2+}\) uptake and release pathways are described as in the control case in column A. Whereas weak stimuli cause \(Ca^{2+}\) accumulation (third panel, curve 1), increasing the stimulus strength leads to progressively weaker accumulation (Fig. 5 B second and third
curves), until the balance between uptake and release tips in favor of net Ca\(^{2+}\) release (Fig. 5 B, curves 4–5).

The accompanying study demonstrates such a transition in sympathetic neurons. Fig. 5 C illustrates a similar transition that results from increasing the maximal c\(_i\)-sensitive permeability of the store (P\(_{\text{max,RyR}}\)) in the case where the stimulus is fixed and the c\(_i\) dependence of the permeability is steep. When P\(_{\text{max,RyR}}\) is small (Fig. 5 C, bottom panel), the store is a Ca\(^{2+}\)-regulated buffer (Fig. 5 C, second and third panels), but if this parameter is increased sufficiently, the same stimulus triggers net Ca\(^{2+}\) release (e.g., see curve 12).

In the discussion, we will show how such quantitative properties of the CICR pathway are expected to contribute to qualitative properties of cellular Ca\(^{2+}\) regulation.
Returning to the main goal of the present study, we propose that small \([\text{Ca}^{2+}]\) elevations elicited by weak depolarization increase the rate of passive \(\text{Ca}^{2+}\) release via a \(\text{Ca}^{2+}\) and ryanodine-sensitive CICR pathway, but because release is slower than uptake, the overall effect is to reduce the rate of ER \(\text{Ca}^{2+}\) accumulation. In terms of the ideas presented earlier, such a low gain mode of CICR would reduce the outward flux \(J_X\) during depolarization and shift the total cytosolic \(\text{Ca}^{2+}\) flux during stimulation (\(J_{\text{ICa}} + J_S\)) toward more negative values, leading to a faster rise in \([\text{Ca}^{2+}]\), than would be expected without CICR. In this mode, activation of CICR accelerates the rise in \([\text{Ca}^{2+}]\), elicited by \(\text{Ca}^{2+}\) entry, but does so by reducing the strength of ER \(\text{Ca}^{2+}\) buffering.

DISCUSSION

Our results show that small \([\text{Ca}^{2+}]\), elevations evoked by weak depolarization lead to \(\text{Ca}^{2+}\) accumulation by the ER, and that \(\text{Ca}^{2+}\) accumulation becomes stronger after inhibiting CICR with ryanodine. The companion article (see Hongpaisan et al., 2001, in this issue) shows that as stimulus-evoked \([\text{Ca}^{2+}]\), elevations become larger, ER \(\text{Ca}^{2+}\) accumulation becomes progressively weaker, and that at high \([\text{Ca}^{2+}]\), the ER becomes a \(\text{Ca}^{2+}\) source. Our results suggest a simple explanation: progressive activation of a \([\text{Ca}^{2+}]\),-sensitive CICR pathway that operates in parallel with SERCA pumps to regulate net ER \(\text{Ca}^{2+}\) transport.

Comparison with Previous Studies

Studies in many neuronal cell types have identified a \(\text{Ca}^{2+}\) store that expresses functional RyRs and can be discharged by caffeine (Kuba, 1994; Usachev and Thayer, 1999). This and the companion article (see Hongpaisan et al., 2001, in this issue) provide direct confirmation that this \(\text{Ca}^{2+}\) store is the ER, contributing to the already large body of evidence that this organelle is important in cellular \(\text{Ca}^{2+}\) regulation (Meldolesi and Pozzan, 1998). Although contributions from caffeine-modified RyRs to depolarization-evoked \([\text{Ca}^{2+}]\), signals have been clear, it has not been obvious how RyRs participate in calcium signaling in the absence of CICR modifiers. In sympathetic neurons, the observation that ryanodine slows depolarization-evoked \([\text{Ca}^{2+}]\), elevations raised the possibility that activation of a CICR pathway amplifies the effect of \(\text{Ca}^{2+}\) entry on \([\text{Ca}^{2+}]\), (Friel and Tsien, 1992a). This was supported by work of Hua et al. (1993) showing that depolarization-induced \([\text{Ca}^{2+}]\), elevations increase supralinearly with \(\text{Ca}^{2+}\) load and exhibit a form of paired-pulse facilitation. Similar observations have been made in other cells (Shmigol et al., 1995; Llano et al., 1994). Although these results are consistent with \(\text{Ca}^{2+}\)-induced net \(\text{Ca}^{2+}\) release from an intracellular \(\text{Ca}^{2+}\) store, they are also consistent with \([\text{Ca}^{2+}]\),-dependent attenuation of intracellular \(\text{Ca}^{2+}\) buffering or sequestration. One approach to distinguishing between these possibilities is based on the use of CICR inhibitors like ryanodine. However, our results show that specific inhibition of CICR is expected to slow depolarization-evoked \([\text{Ca}^{2+}]\), responses irrespective of the direction of net ER \(\text{Ca}^{2+}\) transport. Therefore, additional information is required. Several studies have provided examples where \(\text{Ca}^{2+}\) entry triggers net CICR (Cohen et al., 1997; Alonso et al., 1999; Emptage et al., 1999; Sandler and Barbara, 1999). However, to our knowledge, the present study is the first to show that activation of a \(\text{Ca}^{2+}\)- and ryanodine-sensitive \(\text{Ca}^{2+}\) release process during periods of \(\text{Ca}^{2+}\) entry accelerates \([\text{Ca}^{2+}]\), responses by attenuating ER \(\text{Ca}^{2+}\) accumulation.

Impact of CICR on Net ER \(\text{Ca}^{2+}\) Transport

At each instant in time during stimulation, the rate of net ER \(\text{Ca}^{2+}\) transport should depend on the relative rates of \(\text{Ca}^{2+}\) uptake via SERCA pumps and passive \(\text{Ca}^{2+}\) release via RyRs, \(\text{d}-\text{myo}-\text{inositol 1,4,5-trisphosphate (InsP}_3\text{)}\) receptors (Pfaffinger et al., 1988), and possibly other uncharacterized \(\text{Ca}^{2+}\) transport pathways. The finding that weak depolarization leads to ER \(\text{Ca}^{2+}\) accumulation indicates that small \([\text{Ca}^{2+}]\), elevations stimulate \(\text{Ca}^{2+}\) uptake more strongly than release. Stimulated \(\text{Ca}^{2+}\) uptake is expected since SERCA activity increases with \([\text{Ca}^{2+}]\), (Lytton et al., 1992), but how would the rate of \(\text{Ca}^{2+}\) release be expected to change in response to a rise in \([\text{Ca}^{2+}]\)? This rate should depend on the driving force for passive \(\text{Ca}^{2+}\) movement between the ER and cytoplasm (~\([\text{Ca}^{2+}]\), − \([\text{Ca}^{2+}]\), and the \(\text{Ca}^{2+}\) permeability of the ER (\(P_{\text{ER}}\)). If \(P_{\text{ER}}\) were constant, a rapid rise in \([\text{Ca}^{2+}]\), (rapid enough so that \([\text{Ca}^{2+}]\), does not change much) would reduce the driving force and lower the rate of release. If \(P_{\text{ER}}\) increased weakly with \([\text{Ca}^{2+}]\), (e.g., as a result of \([\text{Ca}^{2+}]\),-dependent RyR activation), the effect of reduced driving force on release rate would be partially overcome; if \(P_{\text{ER}}\) increased more steeply with \([\text{Ca}^{2+}]\), the rate of release could rise. Our results are consistent with a \(\text{Ca}^{2+}\)-induced increase in the rate of passive \(\text{Ca}^{2+}\) release that is smaller than the stimulated increase in uptake rate. In this case, \(\text{Ca}^{2+}\) accumulation would occur as \([\text{Ca}^{2+}]\), rises but at a reduced rate because of RyR activation that, in effect, short circuits the uptake process and permits \([\text{Ca}^{2+}]\), to rise more rapidly during periods of \(\text{Ca}^{2+}\) entry. Inhibition of the permeability increase (e.g., with ryanodine) would prevent the increase in release rate, augment the imbalance between uptake and release, and strengthen \(\text{Ca}^{2+}\) accumulation, causing \([\text{Ca}^{2+}]\), to rise more slowly during stimulation.
Effects of Ryanodine on Net ER Ca$^{2+}$ Transport

Slowing of depolarization-evoked [Ca$^{2+}$], responses by ryanodine has been interpreted to mean that Ca$^{2+}$ entry normally triggers net Ca$^{2+}$ release. This conclusion is based on the assumption, previously untested, that ryanodine renders the ER so leaky that active Ca$^{2+}$ accumulation becomes impossible. However, if ryanodine only modestly increases ER Ca$^{2+}$ permeability, its effects on evoked [Ca$^{2+}$], responses are consistent with either triggered net Ca$^{2+}$ release or attenuated Ca$^{2+}$ accumulation. We found that ryanodine (1 μM) abolishes caffeine responsiveness; reduces basal [CaER] (and presumably [Ca$^{2+}$]_ER, although this was not measured directly); and enhances depolarization-induced ER Ca accumulation. Each effect follows from known actions of ryanodine on RyRs (see MATERIALS AND METHODS). Inhibition of caffeine responsiveness is expected based on reduced RyR sensitivity to Ca$^{2+}$, and a reduction in basal [CaER] follows from increased channel open probability. The finding that ryanodine does not alter the basal rate of Ca$^{2+}$ release argues that once RyRs are modified, [Ca$^{2+}$]_ER falls until a new steady-state level is reached where Ca$^{2+}$ release once again balances Ca$^{2+}$ uptake. In principle, either action of ryanodine could contribute to inhibition of caffeine-induced Ca$^{2+}$ release. However, since net Ca$^{2+}$ release can be stimulated by SERCA inhibition after ryanodine treatment, loss of caffeine responsiveness cannot be accounted for entirely by depletion of the ER, and is more likely a result of reduced RyR sensitivity to Ca$^{2+}$. We propose that Ca$^{2+}$ accumulation by the ER is enhanced in ryanodine-treated cells because as [Ca$^{2+}$]_ER rises during stimulation, the rate of passive Ca$^{2+}$ release falls, in contrast to the rise that occurs in untreated cells. This would increase the imbalance between ER Ca$^{2+}$ uptake and release rates, favoring stronger Ca accumulation.

Clearly, other factors could contribute to our observations. For example, after ryanodine treatment, the reduction in basal [CaER] could cause the ER to become a less saturated, and therefore more powerful, Ca$^{2+}$ buffer. Although our data do not address this point directly, it should be mentioned that this explanation cannot account for net Ca$^{2+}$ release at high [Ca$^{2+}$]. In contrast, graded activation of a CICR pathway provides a parsimonious explanation for attenuated Ca accumulation at low [Ca$^{2+}$], net Ca$^{2+}$ release at high [Ca$^{2+}$], (Hongpaisan et al., 2001), and stronger ER Ca$^{2+}$ buffering after ryanodine treatment, without making any assumptions about the properties of intraluminal Ca$^{2+}$ buffers. Furthermore, simulations in Fig. 5 show that this idea is reasonable and can account for our general observations.

The findings described in this study are consistent with a single ER Ca$^{2+}$ pool expressing multiple transport pathways (SERCAs, RyRs, InsP$_3$s, etc.), but it must be asked if they can also be explained by structurally distinct ryanodine-sensitive and -insensitive pools that are both sensitive to Tg and, respectively, release and take up net Ca$^{2+}$ during depolarization. Although the existence of such pools cannot be excluded, our measurements do not detect them (see companion article, Hongpaisan et al., 2001, in this issue). Moreover, the observation that ryanodine does not change the basal rate of Ca$^{2+}$ uptake (Fig. 4, D and E) severely limits such multipool models. If the ER did consist of two (or more) distinct pools, the basal rate of Ca$^{2+}$ uptake would be the sum of the rates of uptake by the individual pools. If ryanodine specifically eliminated contributions from the ryanodine-sensitive pool by rendering it so leaky that Ca$^{2+}$ becomes passively distributed between the ER and cytoplasm, then it would also reduce the initial rate at which [Ca$^{2+}$], rises after exposure to t-BuBHQ, but no such change was observed. Insensitivity of the initial rate to ryanodine would require that the resting rate of Ca$^{2+}$ uptake by the ryanodine-sensitive pool be undetectably low, which is difficult to reconcile with the observation that caffeine-induced [Ca$^{2+}$], transients are larger if they are preceded by brief depolarizations that raise [Ca$^{2+}$], to levels comparable to those shown in this study to stimulate ER Ca$^{2+}$ accumulation (unpublished data). The single-pool model, on the other hand, provides a simple explanation of the results. A similar conclusion was reached by Khodakhah and Armstrong (1997) from their studies of cerebellar Purkinje neurons.

Qualitative Properties of CICR: Dual Regulation of Cytoplasmic and ER Calcium Levels

Our results indicate that CICR modulates ER Ca$^{2+}$ accumulation during weak stimulation, but they do not preclude net Ca$^{2+}$ release via CICR at higher [Ca$^{2+}$]. Indeed, as illustrated in Fig. 5 B, theory suggests that under certain conditions, larger stimulus-evoked [Ca$^{2+}$], elevations can lead to a transition from regulated Ca$^{2+}$ buffering to triggered net Ca$^{2+}$ release, and the model provides a framework for evaluating the conditions under which such a transition can occur. Since mitochondria are not included in the model, simulations can only be compared directly to results obtained under conditions where mitochondrial Ca$^{2+}$ transport is weak. However, Ca$^{2+}$ transport by mitochondria is not expected to influence the [Ca$^{2+}$], dependence of net ER Ca$^{2+}$ transport, per se, but rather the range over which [Ca$^{2+}$], varies during stimulation (see companion article, Hongpaisan et al., 2001, in this issue). Therefore, analysis of the case without mitochondria should provide insight into the properties of ER Ca$^{2+}$ transport even when mitochondrial Ca$^{2+}$ transport is appreciable.

According to the model, c$_i$ and c$_{ER}$ dynamics depend on the total cytosolic Ca$^{2+}$ flux (J$_i$) and the net ER Ca$^{2+}$
CICR Attenuates ER Ca Accumulation

Figure 6. Three modes of net CICR. (A and B) Surfaces showing how the net cytoplasmic and ER Ca\(^{2+}\) fluxes, \(J_i\) and \(J_{ER}\), depend on \(c_i\) and \(c_{ER}\). In the case \(J_{ICa} = 0\) according to the model described in the Appendix. Slices from these surfaces at constant \(c_{ER}\) (dashed lines) illustrate the nonlinear \(c_i\) dependencies of the underlying Ca\(^{2+}\) fluxes, whereas curves at constant \(c_i\) illustrate the linear \(c_{ER}\) dependence of the fluxes. Parameters describing the \(c_i\)-sensitive permeability are as follows:

- \(P_{max,RyR} = 1.2 \times 10^{-4} \text{ s}^{-1}\)
- \(EC_{50,RyR} = 500 \text{nM}\)
- \(n_{RyR} = 3\)

Basal \(c_{ER} = 90.8 \mu M\). (C and D, left) Slices from the surfaces in A and B at constant \(c_{ER}\). These flux/\(c_i\) relations illustrate the basis for three qualitatively distinct modes of net CICR: Mode 1 (\(J_{ICa} > 0, J_{ER} > 0\)), Mode 2 (\(J_{ICa} > 0, J_{ER} < 0\)), and Mode 3 (\(J_{ICa} < 0, J_{ER} < 0\)). The ranges of \(c_i\) in which these modes occur are indicated in D (bottom).

(F, left) \(c_i\) dependence of the Ca\(^{2+}\) permeability, \(P_{ER}\). In each case, \(c_{ER}\) was fixed at its resting value, which depended on \(P_{max,RyR}\). Values of \(P_{max,RyR}\) were \(0, 1.8, 3.6, 5.4, 7.2, 8.4, 9.6, \) and 12. (F) Relationship between the rates of Ca\(^{2+}\) uptake, release, and extrusion in each CICR mode. Relative free Ca concentrations are represented by shading (darker = higher \([\text{Ca}^{2+}]\)). In Mode 1 (low \(c_i\)), uptake is faster than release, whereas in Mode 2 (intermediate \(c_i\)), release is faster than uptake, causing net release but at a slower rate than extrusion. In Mode 3 CICR (high \(c_i\)), net release is faster than extrusion, leading to positive feedback and a regenerative rise in \(c_i\). Surface in A describes the total Ca\(^{2+}\) flux representing uptake, release, and extrusion (dark arrow on the plasma membrane in F) in the absence of stimulated Ca\(^{2+}\) entry. During stimulated Ca\(^{2+}\) entry (light arrows on the plasma membrane), the surface in A would be displaced downward by an amount \(J_{ICa}\), which depends on time.

\(P_{max,RyR}\) were \((10^{-4} \text{ s}^{-1})\) as follows: 0, 1.8, 3.6, 5.4, 7.2, 8.4, 9.6, and 12. (F) Relationship between the rates of Ca\(^{2+}\) uptake, release, and extrusion in each CICR mode. Relative free Ca concentrations are represented by shading (darker = higher \([\text{Ca}^{2+}]\)). In Mode 1 (low \(c_i\)), uptake is faster than release, whereas in Mode 2 (intermediate \(c_i\)), release is faster than uptake, causing net release but at a slower rate than extrusion. In Mode 3 CICR (high \(c_i\)), net release is faster than extrusion, leading to positive feedback and a regenerative rise in \(c_i\). Surface in A describes the total Ca\(^{2+}\) flux representing uptake, release, and extrusion (dark arrow on the plasma membrane in F) in the absence of stimulated Ca\(^{2+}\) entry. During stimulated Ca\(^{2+}\) entry (light arrows on the plasma membrane), the surface in A would be displaced downward by an amount \(J_{ICa}\), which depends on time.
c_i and c_{ER} dynamics owing to differences in c_{ER} that arise during stimulation. Nevertheless, at each instant in time, the net fluxes J_i and J_{ER} would be defined by the magnitudes of c_{i}, c_{ER} and J_{iC,R} at that time.

In the case illustrated, J_i first increases with c_i and crosses the zero net flux axis at a (stable) steady-state value (Fig. 6 C, left arrow) that is well below the Ca^{2+} concentration (EC_{SO,RyR}) where the c_i-sensitive permeability is half maximally activated (Fig. 6 E, left). However, when c_i is higher, the permeability of the store is larger, causing J_i to turn downward, cross the zero flux axis with negative slope at an (unstable) steady-state (panel C, right arrow), and then become negative. There are three ranges of c_i in which J_i and J_{ER} show distinct c_i-dependencies, revealing three modes of CICR (Fig. 6 D, arrows 1–3; Friel, 1998). When c_i is above the resting level, but low compared with EC_{SO,RyR}, J_i and J_{ER} are both positive (Mode 1 CICR). J_{ER} is positive because passive Ca^{2+} release is slower than Ca^{2+} uptake, causing the store to act as a buffer. In this case, activation of the c_i-sensitive permeability during stimulation lowers the rate of Ca^{2+} accumulation by the store and accelerates evoked increases in c_i. Over the intermediate c_i range, J_i is positive and J_{ER} is negative (Mode 2 CICR). J_{ER} becomes negative when passive Ca^{2+} release is faster than uptake, leading to net release, which further increases the rate at which c_i rises in response to stimulated Ca^{2+} entry, and causes c_{ER} to decline. Finally, at higher c_i, both J_i and J_{ER} become inward fluxes (Mode 3 CICR). A brief stimulus that brings c_i within this range would stimulate Ca^{2+} release at such a high rate that it overwhelms Ca^{2+} extrusion, leading to a regenerative rise in c_i and fall in c_{ER}. The zero crossing in this case represents the threshold for regenerative net CICR (Fig. 6C, see right arrow). When c_i is very high compared with EC_{SO,RyR}, J_i once again increases monotonically with c_i, representing the case where the total Ca^{2+} permeability is high and essentially constant (not shown).

With fixed rate characteristics for Ca^{2+} extrusion and uptake, the quantitative properties of the c_i-dependent permeability determine which modes of net CICR can be expressed. Fig. 6 (C and D, right) shows families of slices from J_i and J_{ER} surfaces like those in Fig. 6 (A and B) at constant c_{ER} but with different values of P_{max,RyR} (Fig. 6 E, right). P_{max,RyR} would depend on the number of Ca^{2+} release channels, their maximal open probability at high c_i, and unitary Ca^{2+} permeability. When P_{max,RyR} is small, only Mode 1 CICR is available, irrespective of the stimulus strength. This would describe a cell in which Ca^{2+} release channels are present at low density compared with SERCA pumps. With intermediate values of P_{max,RyR}, both Modes 1 and 2 are available, but not Mode 3, which could represent a cell in which RyR density relative to SERCA pumps is somewhat higher, but plasma membrane Ca^{2+} extrusion systems are powerful. Finally, when P_{max,RyR} is large, all three modes are available, which includes the possibility of regenerative Ca^{2+} release if c_i is raised beyond the appropriate threshold. For example, this could represent a case in which RyRs are expressed at high density compared with SERCAs or are modified pharmacologically so that their maximal open probability is high. Cells having different levels of channel expression would be described by different values of P_{max,RyR}, as would a given cell type before and after a pharmacological modification (e.g., by caffeine). Naturally occurring variations in the density or unitary properties of RyRs or SERCAs could contribute to variability of response properties observed in different populations of sympathetic neurons (Seresnyes et al., 1999) or different types of cells. These general conclusions are not limited to RyR-mediated CICR and apply equally well to InsP_3 receptor mediated CICR.

Which modes of CICR are expressed by sympathetic neurons? Results from the present study demonstrate Mode 1 CICR, and results in the companion article (see Hongpaisan et al., 2001, in this issue) show that when [Ca^{2+}], is raised to higher levels by stronger depolarizing stimuli, Mode 2 or 3 CICR can occur. Regenerative depolarization-induced [Ca^{2+}], elevations have been reported in sympathetic neurons in the absence of caffeine (Lipscombe et al., 1988; Hua et al., 1993), further pointing to the possibility of Mode 3 CICR. Regenerative [Ca^{2+}], increases can be elicited in the presence of caffeine in these and other cells (Friel and Tsien, 1992b; Usachev and Thayer, 1997), clearly demonstrating Mode 3 CICR under these conditions.

Implications for Calcium Signaling

Activation of a CICR pathway is expected to have direct effects on stimulus-evoked changes in [Ca^{2+}] within the cytoplasm and the ER, as well as indirect effects on other organelles that exchange Ca^{2+} with the cytoplasmic pool. Modulation of depolarization-evoked changes in [Ca^{2+}], by CICR may well contribute to the control of membrane excitability and neurotransmitter release (Narita et al., 1998, 2000; Llano et al., 2000) in a way that is sensitive to stimulus history. Our results indicate that weak and strong depolarizing stimuli, while evoking graded increases in [Ca^{2+}], could have opposite effects on [Ca^{2+}]_{ER}, leading to qualitatively different patterns of activity among Ca^{2+}-sensitive effectors within the cytosol and the ER (Corbett and Michałak, 2000). Weak activation of a CICR pathway would provide a mechanism for increasing the impact of Ca^{2+} entry on [Ca^{2+}], without reducing [Ca]_{ER}. In this regard, it is interesting to note that reducing [Ca]_{ER} has been shown in some cells to be proapoptotic (Wei et al., 1998). Finally, it is expected that the expression levels of Ca^{2+} transporters, as well as their state of modula-
tion, define which modes of CICR can occur. This may play a role in defining differences between cells from different tissues, species and developmental stages, as well as adaptive changes that occur after perturbations of Ca\(^{2+}\) delivery in disease (Dove et al., 2000).

A Note on Terminology

Our results underscore a basic ambiguity in the phrase “Ca\(^{2+}\)-induced Ca\(^{2+}\) release” that arises because there is a distinction between Ca\(^{2+}\) transport via a CICR pathway, and net Ca\(^{2+}\) transport by the ER. CICR is usually used to refer to net Ca\(^{2+}\) release, but the results presented here indicate that activation of a Ca\(^{2+}\)-sensitive release pathway can regulate ER Ca\(^{2+}\) accumulation. In both cases, activation of the CICR pathway accelerates depolarization-evoked [Ca\(^{2+}\)]i elevations, but, in one case, [Ca\(^{2+}\)]ER rises whereas in the other it falls. In principle, CICR could refer to either situation, describing passive release via a Ca\(^{2+}\)-sensitive permeability without reference to the direction of net organelar Ca\(^{2+}\) movement, or Ca\(^{2+}\)-induced net Ca\(^{2+}\) release. Since the second definition necessarily involves the relationship between a CICR pathway and other transport systems, we prefer the first definition, and use the phrase “net CICR” to refer to the second. According to this usage, CICR refers to a passive macroscopic Ca\(^{2+}\) flux whose impact on intraluminal Ca\(^{2+}\) levels is context-dependent.

APPENDIX

Description of the Model

The dynamics of the free Ca\(^{2+}\) concentration within the cytosol (ci) and the ER (cER) were represented by the following differential equations (Eqs. 1 and 2; see Fig. 7).

\[
\frac{dc_i}{dt} = -J_i \tag{1}
\]

\[
\frac{dc_{ER}}{dt} = \frac{J_{ER}}{\gamma_{ER}} \tag{2}
\]

where

\[J_i = J_{pm} + J_{ER} \tag{3}\]

and the intercompartmental fluxes Jpm and JER depend on the relative rates of transport via different pathways as follows:

\[J_{pm} = J_{extru} + J_{ICA} \tag{4}\]

\[J_{ER} = J_{SERCA} + J_{Release} \tag{5}\]

where

\[J_{extru} = k_{leak}(c_i - c_o) + \frac{V_{max,extru}}{1 + \left(\frac{EC_{50,extru}}{c_i}\right)^n_{extru}} \tag{6}\]

\[J_{ICA} = \frac{I_{Ca}}{2Fv_i\kappa_i} \tag{7}\]

\[J_{SERCA} = \frac{V_{max,SERCA}}{1 + \left(\frac{EC_{50,SERCA}}{c_i}\right)^n_{SERCA}} \tag{8}\]

\[J_{Release} = P_{ER}(c_i - c_{ER}) \tag{9}\]

and

\[P_{ER} = P_{basal} + \frac{P_{max,RyR}c_{ER}}{1 + \left(\frac{EC_{50,RyR}}{c_i}\right)^n_{RyR}} \tag{10}\]

\[\gamma_{ER} = \frac{v_{ER}K_{ER}}{v_i\kappa_i} \tag{11}\]

k_{leak}, c_o, V_{max,extru}, EC_{50,extru}, n_{extru}, F, V_{max,SERCA}, EC_{50,SERCA}, n_{SERCA}, P_{basal}, P_{max,RyR}, EC_{50,RyR}, n_{RyR}, and \gamma_{ER} are constants. c_o is the extracellular Ca\(^{2+}\) concentration and F is the Faraday constant.

Eqs. 3–9 describe the rate of total Ca\(^{2+}\) transport by the respective pathways divided by the cytoplasmic volume (v_i) and a buffering factor that is the ratio of changes in total cytoplasmic Ca concentration that accompany small changes in free Ca concentration (κ_i, Colegrove et al., 2000a,b). Fluxes that raise ci are negative and fluxes that lower ci are positive. J_{extru} is the sum of plasma membrane pump and leak fluxes. P_{ER} describes the total Ca\(^{2+}\) permeability of the ER store and consists of a constant basal component (P_{basal}) and a C7 dependent component that increases saturably with ci (half-maximal activation when ci = EC_{50,RyR}) and approaches P_{max,RyR} when is high ci (Fig. 5, A–C, bottom).

![Figure 7. Schematic of the model.](image)

(left) Model includes two compartments representing the cytoplasm and ER with Ca\(^{2+}\) concentrations ci and cER. The extracellular Ca\(^{2+}\) concentration is assumed to be constant. ci and cER change under the influence of the intercompartmental net Ca\(^{2+}\) fluxes Jpm and JER. (right) Components of the intercompartmental Ca\(^{2+}\) fluxes. Jpm is the sum of the rates of Ca\(^{2+}\) entry through voltage-gated Ca\(^{2+}\) channels (J_{ica}) and Ca\(^{2+}\) extrusion (J_{extru}). JER is the sum of the rates of Ca\(^{2+}\) uptake (J_{SERCA}) and passive Ca\(^{2+}\) release (J_{Release}). See APPENDIX for definitions of the fluxes and their ci- and cER dependencies and figure legends for parameter values.

\[J_{extru} = k_{leak}(c_i - c_o) + \frac{V_{max,extru}}{1 + \left(\frac{EC_{50,extru}}{c_i}\right)^n_{extru}} \tag{6}\]

\[J_{ICA} = \frac{I_{Ca}}{2Fv_i\kappa_i} \tag{7}\]

\[J_{SERCA} = \frac{V_{max,SERCA}}{1 + \left(\frac{EC_{50,SERCA}}{c_i}\right)^n_{SERCA}} \tag{8}\]

\[J_{Release} = P_{ER}(c_i - c_{ER}) \tag{9}\]

and

\[P_{ER} = P_{basal} + \frac{P_{max,RyR}c_{ER}}{1 + \left(\frac{EC_{50,RyR}}{c_i}\right)^n_{RyR}} \tag{10}\]

\[\gamma_{ER} = \frac{v_{ER}K_{ER}}{v_i\kappa_i} \tag{11}\]
In the model, the c_i dependence of P_{ER} is responsible for CICR. Estimation of parameters for Eq. 6 is described in Colegrove et al. (2000b), measurement of k_i is described in MATERIALS AND METHODS, and parameters for Eqs. 8–11 are estimates based on our unpublished data.

The authors thank Drs. S.W. Jones, D. Kunze and J. Ma for their helpful comments on the manuscript. This work was supported by a grant (No. NS-33514) from the NIH and by the NIH Intramural Research Program.

REFERENCES

Toescu, E.C. 1998. Intraneuronal Ca\(^{2+}\) stores act mainly as a Ca\(^{2+}\) sink; in cerebellar granule cells. Neureport. 9:1227–1231.

