Slob, a Slowpoke channel–binding protein, modulates synaptic transmission

Huifang Ma, Jiaming Zhang, and Irwin B. Levitan
Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107

Modulation of ion channels by regulatory proteins within the same macromolecular complex is a well-accepted concept, but the physiological consequences of such modulation are not fully understood. Slowpoke (Slo), a potassium channel critical for action potential repolarization and transmitter release, is regulated by Slo channel–binding protein (Slob), a Drosophila melanogaster Slo (dSlo) binding partner. Slob modulates the voltage dependence of dSlo channel activation in vitro and exerts similar effects on the dSlo channel in Drosophila central nervous system neurons in vivo. In addition, Slob modulates action potential duration in these neurons. Here, we investigate further the functional consequences of the modulation of the dSlo channel by Slob in vivo, by examining larval neuromuscular synaptic transmission in flies in which Slob levels have been altered. In Slob-null flies generated through P-element mutagenesis, as well as in Slob knockdown flies generated by RNA interference (RNAi), we find an enhancement of synaptic transmission but no change in the properties of the postsynaptic muscle cell. Using targeted transgenic rescue and targeted expression of Slob-RNAi, we find that Slob expression in neurons (but not in the postsynaptic muscle cell) is critical for its effects on synaptic transmission. Furthermore, inhibition of dSlo channel activity abolishes these effects of Slob. These results suggest that presynaptic Slob, by regulating dSlo channel function, participates in the modulation of synaptic transmission.

INTRODUCTION

Slowpoke (Slo) is a large-conductance voltage-gated, calcium-dependent potassium channel (Atkinson et al., 1991; Adelman et al., 1992; Tseng-Crank et al., 1994). It is involved in a variety of physiological phenomena, including the regulation of cell excitability, neurotransmitter release, and muscle contraction (Elkins and Ganetzky, 1988; Singh and Wu, 1990; Warbington et al., 1996; Atkinson et al., 2000). Slo is often associated with auxiliary subunits that interact with the channel and modulate its activity (Lu et al., 2006). For example, mammalian Slo channels bind to multiple distinct β subunits, each of which modulates channel function in different ways (Weiger et al., 2002). The Slo channel–binding protein (Slob) was discovered in a yeast two-hybrid screen using the C-terminal tail region of the Drosophila melanogaster Slo (dSlo) calcium-dependent potassium channel as bait (Schopperle et al., 1998). Multiple Slob variants arise from alternative splicing and multiple translational start sites; these Slob variants are named based on their molecular weights (in kilodaltons), Slob51, 57, 65, and 71 (Jaramillo et al., 2006).

Using patch recordings from cells cotransfected with dSlo and different Slob variants to investigate the specific effects of each Slob on dSlo channel function, we found that Slob57 (the most prominent Slob isoform) and Slob51 shift the dSlo conductance–voltage relationship to more depolarized voltages as well as lead to channel inactivation and faster deactivation of dSlo. The other Slob variants shift the conductance–voltage relationship of dSlo to less depolarized voltages and have no effect on dSlo kinetics (Zeng et al., 2005). The amino-terminal region of the Slob variants appears to be critical in determining their specific effects on dSlo (Zeng et al., 2005). Slob mRNA and protein are expressed in many areas of the Drosophila brain, including pars intercerebralis (PI) neurons, photoreceptors, and the optic lobe (Jaramillo et al., 2004). Slob protein is also expressed at the larval neuromuscular junction (NMJ) (Zhou et al., 1999). Slob is expressed especially prominently in the PI neurons (Jaramillo et al., 2004), and patch recordings from these neurons in vivo reveal a role for Slob in the modulation of neuronal dSlo channels and action potential duration (Shahidullah et al., 2009).

Slob colocalizes with dSlo as well as with another signaling protein, 14-3-3, at the presynaptic terminal of the NMJ (Zhou et al., 1999). In the current study, we examined the function of Slob in synaptic transmission at the larval NMJ, using a combination of genetic manipulation and voltage clamp recording techniques. Knockout
of Slob by P-element mutagenesis, or knockdown by transgenic expression of Slob-RNAi, leads to increases in the evoked excitatory junctional current (EJC) and higher spontaneous transmitter release. The altered synaptic transmission can be induced by disruption of Slob presynaptically and rescued when Slob expression is restored presynaptically; disruption or restoration of Slob only in postsynaptic muscle cells has no effect. Furthermore, despite the increases in synaptic transmission, muscle cell input resistance and capacitance do not change, indicating that Slob ablation does not change general muscle cell properties. Disruption of the dSlo channel by either pharmacological or genetic manipulation abolishes the effects of altering Slob expression, suggesting that Slob affects synaptic transmission through its modulation of the dSlo channel.

MATERIALS AND METHODS

Drosophila stock

Flies were reared at 25°C on standard Drosophila medium. Slob-null lines generated via P-element mutagenesis, Slob knockdown lines generated via expression of upstream activation sequence (UAS) fused with Slob RNA interference (RNAi; Slob-RNAi), and fly lines expressing transgenic UAS-Slob57 were as described previously (Shahidullah et al., 2009). Lines P{GawB}1407 (stock no. 8751; expression of UAS downstream gene in nerve) and P{GawB}how[24B] (stock no. 1767; expression of UAS downstream gene in embryonic mesoderm) were purchased from the Bloomington fly stock center. Actin-GAL4/Tm6B (ubiquitous expression of UAS downstream gene) and elav-Gene Switch (expression of UAS downstream gene in the nervous system) lines were provided by A. Sehgal (University of Pennsylvania, Philadelphia, PA). The elav-Gene Switch line expresses a conditional elav-Gal4 protein whose activation requires the presence of RU-486 (mifepristone; Sigma-Aldrich), a synthetic steroid. We diluted RU-486 provided by A. Sehgal (University of Pennsylvania, Philadelphia, PA) at a dilution of 1:200 in PBST (0.1% Tween 20 in Tris-buffered saline) and probed with anti-Slob antibody overnight. The blots were washed with TBST before incubation with horseradish peroxidase (HRP)-conjugated donkey anti–rabbit secondary antibody (GE Healthcare) for 1 h. Finally, the signals were detected using the Enhanced Chemiluminescence Detection System (GE Healthcare).

Immunostaining

Fly larvae were dissected at 4°C as for electrophysiological recordings (described below), fixed in 4% paraformaldehyde for 30 min, and blocked with 10% normal donkey serum in PBS containing 0.1% Triton X-100 (PBST) for 1 h. Samples were then incubated overnight at 4°C with rabbit anti-Slob polyclonal antibody (1:1,000) and Texas red–conjugated donkey anti-rabbit IgG antibody (1:100). Samples were washed in PBST six times for 15 min each before being incubated with the secondary antibodies (FITC-conjugated donkey anti–rabbit IgG and Texas red-conjugated donkey anti–goat IgG; both provided by L. Iacovitti, Thomas Jefferson University, Philadelphia, PA) at a dilution of 1:200 in PBST containing 5% normal donkey serum for 2 h, and washed in PBS six times for 20 min each before being mounted on the slides. Staining was visualized by fluorescence microscopy using a microscope (IX81; Olympus).

Electrophysiological recording from NMJ

Larvae were dissected and recorded in hemolymph-like saline (in mM): 70 NaCl, 5 KCl, 4 MgCl₂, 10 NaHCO₃, 5 trehalose, 115 sucrose, and 5 HEPES, pH 7.2, as described previously (Broadie and Bate, 1993). All cells selected for recording had resting membrane potentials between −50 and −70 mV. Both miniature and evoked postsynaptic currents were recorded while the muscle cell was voltage clamped at −60 mV using an AxoC-lamp 2A (Axon Instruments) in single-electrode voltage clamp mode (switching frequency, 10 kHz) and sharp microelectrodes (Warner Instruments) filled with 3 M KCl (5–10 MΩ resistance). Groups of data were first tested with one-way ANOVA. When the difference was significant (P < 0.05), Student’s t test was used to
Ma et al. 227

residual band in the mutIP1 flies (Fig. 1 A, lane 2) is non-specific staining of an unknown protein that is similar in molecular weight but not related to Slob (Jaramillo et al., 2006). Rescue of Slob ubiquitously (Fig. 1 A, lane 3) or in the nervous system (lane 4) restores Slob expression in fly heads. We do not see any changes in dSlo expression in Slob-mutant flies (unpublished data).

In the Slob-RNAi flies (Fig. 1 B), when Slob-RNAi expression is ubiquitous (Slob-RNAiall), Slob protein level is also reduced (lane 2 compared with lane 1). If Slob-RNAi expression is only in muscle (Fig. 1 B, lane 3), Slob protein level in fly heads remains similar to that in WT. Slob-RNAi expression driven by a nerve-specific Gal4 driver does not affect Slob levels in the head (Fig. 1 B, lane 4). The 1407-Gal4 driver drives the expression of the UAS downstream gene in peripheral nerve, peripheral neurons, and a portion of central nervous system neurons (Luo et al., 1994). The fact that we do not see a significant decrease of Slob in fly heads suggests that the expression of Slob-RNAi driven by 1407-Gal4 in the adult fly head is minor.

Manipulating Slob expression in larval muscle and nerve terminals
To determine the effects of various genetic manipulations on Slob expression in motor neurons and muscle,

Figure 1. Slob-null and RNAi flies show reduced Slob protein expression in adult fly heads. (A) In mutIP1 flies (lane 2), there is greatly reduced Slob expression compared with the WT P41 flies (Fig. 1 A, lanes 1 and 2). The apparent

residual band in the mutIP1 flies (Fig. 1 A, lane 2) is non-specific staining of an unknown protein that is similar in molecular weight but not related to Slob (Jaramillo et al., 2006). Rescue of Slob ubiquitously (Fig. 1 A, lane 3) or in the nervous system (lane 4) restores Slob expression in fly heads. We do not see any changes in dSlo expression in Slob-mutant flies (unpublished data).

In the Slob-RNAi flies (Fig. 1 B), when Slob-RNAi expression is ubiquitous (Slob-RNAiall), Slob protein level is also reduced (lane 2 compared with lane 1). If Slob-RNAi expression is only in muscle (Fig. 1 B, lane 3), Slob protein level in fly heads remains similar to that in WT. Slob-RNAi expression driven by a nerve-specific Gal4 driver does not affect Slob levels in the head (Fig. 1 B, lane 4). The 1407-Gal4 driver drives the expression of the UAS downstream gene in peripheral nerve, peripheral neurons, and a portion of central nervous system neurons (Luo et al., 1994). The fact that we do not see a significant decrease of Slob in fly heads suggests that the expression of Slob-RNAi driven by 1407-Gal4 in the adult fly head is minor.

Manipulating Slob expression in larval muscle and nerve terminals
To determine the effects of various genetic manipulations on Slob expression in motor neurons and muscle,
Figure 2. Slob expression at the Drosophila NMJ. HRP antibody stains nerve surface and presynaptic terminals (red; left column). White arrows in A point to individual synaptic boutons. Polyclonal antibody to Slob (green; middle column) stains Slob in nerve and nerve terminals and to a more limited extent in muscle. Overlay (yellow-orange; right column) illustrates colocalized Slob and HRP staining. (A) Staining of the WT line in the absence of primary antibody to Slob. (B) Staining of the WT line. (C) Staining of the Slob-null line. Bar, 5 µm.

we used an anti-HRP antibody to visualize nerve surface and presynaptic terminals (left columns in Figs. 2–4) and a Slob antibody to visualize Slob (middle columns in Figs. 2–4). The use of antibody against HRP to specifically identify nerve surface and terminals in Drosophila is well established (Jan and Jan, 1982; Sun and

Figure 3. Slob can be restored to specific locations in a Slob-null background. Staining as for Fig. 2. (A) The Slob-null line as control. (B) Ubiquitous rescue of Slob. (C) Rescue of Slob expression in nerve. (D) Rescue of Slob expression in muscle. Bar, 5 µm.
Ma et al. 229

shows no staining in boutons and a minimal amount of background (Fig. 2 A, middle). Slob is expressed in nerve and to a more limited extent in muscle in WTP41 (Salvaterra, 1995; Parrish et al., 2009; Paschinger et al., 2009; Shen and Ganetzky, 2009). Staining of WTP41 flies in the absence of the primary antibody against Slob shows no staining in boutons and a minimal amount of background (Fig. 2 A, middle). Slob is expressed in nerve and to a more limited extent in muscle in WTP41 (Salvaterra, 1995; Parrish et al., 2009; Paschinger et al., 2009; Shen and Ganetzky, 2009).

Figure 4. Slob can be disrupted in a tissue-specific manner using Slob-RNAi and specific Gal-4 drivers. Staining as for Figs. 2 and 3. (A) The uncrossed WT line (refer to Materials and methods) as control. (B)Ubiquitous disruption of Slob. (C)Disruption of Slob expression in nerve. (D)Disruption of Slob expression in muscle. Bar, 5 μm.

Salvaterra, 1995; Parrish et al., 2009; Paschinger et al., 2009; Shen and Ganetzky, 2009). Staining of WTP41 flies in the absence of the primary antibody against Slob shows no staining in boutons and a minimal amount of background (Fig. 2 A, middle). Slob is expressed in nerve and to a more limited extent in muscle in WTP41 (Salvaterra, 1995; Parrish et al., 2009; Paschinger et al., 2009; Shen and Ganetzky, 2009).

Figure 5. Evoked synaptic transmission is increased in Slob-null flies. (A)Representative recording of the muscle cell membrane potential during voltage clamping and sample traces. The EJC was measured with the muscle cell voltage clamped at −60 mV (top). The stimulation artifact arises from stimulation of the segmental nerve. Sample EJC traces from WT control, two Slob-null lines, and one ubiquitous rescue fly line are shown. (B) Pooled data. Peak amplitude of EJC is increased significantly in mutIP1 and mutK162 flies (black and dark gray bars) compared with the WT P41 control (white bar). In addition, ubiquitous expression of Slob57 in a Slob-null background rescues synaptic transmission to the WT level (light gray bar).
flies (Fig. 2 B). As shown in the merged image in Fig. 2 B (overlay, right panel), much but not all of the Slob expression overlaps with the HRP staining. In mutIP1 flies, in contrast, most or all of the Slob staining in both nerve and muscle is abolished (Fig. 2 C).

In the mutIP1 background (Fig. 3 A), ubiquitous rescue of Slob restores its expression in both nerve and muscle (Fig. 3 B). Rescue in the nervous system restores the overlapping Slob and HRP staining (Fig. 3 C), whereas rescue with the muscle-specific driver leads to high levels of Slob immunostaining in the muscle (Fig. 3 D). The extensive muscle staining in the mutIP1 rescue muscle line makes the overlay uninformative; therefore, it is not shown.

Similarly, ubiquitous knockdown of Slob (Slob-RNAi^{all}) decreases Slob expression in both nerve and muscle, and eliminates the overlap with HRP staining seen in WT¹ flies (compare Fig. 4, A with B). Driving Slob-RNAi expression in nerve decreases Slob expression in the larval nerve terminals but not in muscle (Fig. 4 C), whereas Slob-RNAi expression in muscle leaves the nerve terminal expression intact (Fig. 4 D).

Slob knockout/knockdown leads to altered synaptic transmission

After confirming the changes in Slob expression in Slob-null and tissue-specific rescue flies, and the targeted
disruption of Slob expression in Slob-RNAi flies, we went on to determine whether Slob influences synaptic function at the Drosophila NMJ. We first measured the evoked EJC by clamping the muscle cell at -60 mV and stimulating the presynaptic nerve at 0.2 Hz, with an extracellular CaCl$_2$ concentration of 0.3 mM. We found that the EJC peak amplitude (sample traces shown in Fig. 5 A) in mutIP1 flies is \sim25% higher than in WTP41 flies ($P < 0.01$; Fig. 5 B). mutK162, the other Slob-null fly line tested, also shows a significant increase in EJC peak amplitude compared with WTP41 ($P < 0.05$; Fig. 5, A and B). We also systematically examined the time course of the EJC and found no significant differences between WT and Slob-null flies (Table I). Finally, to confirm that it is the disruption of Slob, but not any other proteins, that induces the increase in EJC amplitude, we used the mutIP1rescueall fly line that expresses Slob ubiquitously in the Slob-null background. We found that ubiquitous restoration of Slob is able to rescue the EJC peak amplitude to the WT level (Fig. 5, A and B).

Next, we asked whether manipulation of Slob expression leads to changes in spontaneous neurotransmitter release. We examined the frequency and amplitude of miniature EJCs (mEJCs) by clamping the muscle cells at -60 mV in the absence or presence of 1 μM TTX, without stimulating the innervating segmental nerve (extracellular CaCl$_2$ concentration, 0.3 mM). As shown in the sample traces in Fig. 6 A and pooled data in Fig. 6 C, TTX does not change the mEJC amplitude or frequency in mutIP1 or WTP41 flies, nor does it alter the marked differences in mEJCs between the mutIP1 and WTP41 lines. Accordingly, we performed other mEJC recordings in

Table I

<table>
<thead>
<tr>
<th>Fly genotype</th>
<th>Rise time (ms)</th>
<th>Decay time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WTP41</td>
<td>5.30 ± 0.23 (24)</td>
<td>50.85 ± 3.02 (24)</td>
</tr>
<tr>
<td>mutIP1</td>
<td>6.17 ± 0.25 (21)</td>
<td>57.16 ± 5.36 (21)</td>
</tr>
</tbody>
</table>

Comparison of rise time and decay time reveals no difference between WTP41 and mutIP1 lines. Mean ± SEM is shown for each group. Rise time (ms) is defined as the time for the trace to rise from 10% of the peak amplitude to 90% of the peak amplitude. Decay time (ms) is defined as the time for the trace to decay from 90% of the peak amplitude to 10% of the peak amplitude. Cell numbers are shown in parentheses. For sample traces, see Fig. 5.
the absence of TTX. The cumulative distributions of mEJC frequency and amplitude are shifted strongly to the right in mutIP1 as compared with WTIP41 flies (Fig. 6 B). The pooled data in Fig. 6 C demonstrate that the mutIP1 fly line shows a remarkable increase in mEJC frequency, almost 100% higher than in WTIP41 flies (in the absence or presence of TTX; P < 0.01 for both). The mEJC amplitude in the mutIP1 fly line is also significantly greater than in WTIP41 flies (in the absence or presence of TTX; P < 0.01 for both). The mutK102 line also exhibits an enhancement in mEJC frequency and amplitude (unpublished data). As is the case for evoked synaptic transmission, ubiquitous restoration of Slob is able to rescue the mEJC peak amplitude and frequency to the WT levels (Fig. 6 C).

To further exclude the possibility that the altered synaptic transmission in these Slob-null flies is a result of the effects of the P-element other than disrupting the Slob gene, we studied synaptic transmission in Slob-RNAi flies. Sample EJC traces from Slob-RNAi flies are shown in Fig. 7 A. The two un-recombined parental lines (WT1) and (WT2) were used as controls. We found that flies with ubiquitous expression of Slob-RNAi (Slob-RNAiWT) exhibit an ~30% increase in EJC peak amplitude compared with the control lines (P < 0.05 and P < 0.01; Fig. 7 B). This similar enhancement of EJC peak amplitude in Slob-null and Slob-RNAi flies is consistent with the idea that the synaptic modulation results from the absence of Slob.

To determine whether the changes in mEJC frequency and amplitude are caused by the disruption of other genes by the P-element, again we examined Slob-RNAi flies. As shown in the sample traces (Fig. 7 C) and pooled data (Fig. 7 D), ubiquitous disruption of Slob (SlobRNAiWT) produces significantly enhanced mEJC frequency and amplitude. Collectively, these data suggest strongly that it is the disruption of Slob expression that leads to the elevated spontaneous neurotransmitter release.

Slob modulates synaptic transmission via the dSlo potassium channel

We went on to investigate whether the altered synaptic transmission induced by the absence of Slob is mediated through changes in the dSlo channel. We first studied synaptic transmission in Slo4 flies in which the dSlo channel is disrupted (Atkinson et al., 1991). As shown in Fig. 8 B and Table II, there is no statistically significant difference in EJC amplitude between Slob WT and mutant flies in the Slo4 background (P > 0.25). There may be a modest change in the EJC decay kinetics, but this was not pursued further. Furthermore, mEJC frequency

Figure 8. Genetic or pharmacological disruption of dSlo eliminates the differences in synaptic transmission between mutIP1 and WTIP41 flies. (A) Averaged EJC traces from Slob-null and control lines. The difference in the EJC (A) is not observed in the Slo4 genetic background (B) or in the presence of 1 mM TEA (C). (D) Sample mEJC traces from Slo4 flies crossed to either Slob WT or null flies, or from control and Slob-null lines in the absence or presence of 1 mM TEA. Pooled data are shown in Table II.
and amplitude are not affected by the Slob genotype in Slo4 flies (Fig. 8 D and Table II).

To examine further the role of dSlo in the synaptic actions of Slob, we applied 1 mM of the pharmacological reagent TEA, which blocks recombinant dSlo channels with a Kᵢ of 80 µM (Shen et al., 1994). Other cloned Drosophila potassium channels such as Shaker, Shab, Shaw, and Shal lack a critical tyrosine residue near their selectivity filters that is present in dSlo, and as a result, they are much less sensitive than dSlo to extracellular TEA.

Table II

dSlo mediates the difference in synaptic transmission between mutIP1 and WTP41 flies

<table>
<thead>
<tr>
<th>Fly genotype/treatment</th>
<th>EJC amplitude (nA)</th>
<th>mEJC frequency (Hz)</th>
<th>mEJC amplitude (nA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT<sup>IP1</sup></td>
<td>11.17 ± 0.73 (37)</td>
<td>0.94 ± 0.09 (48)</td>
<td>0.26 ± 0.02 (34)</td>
</tr>
<tr>
<td>mut<sup>IP1</sup></td>
<td>14.69 ± 0.62 (45)</td>
<td>1.59 ± 0.17 (33)</td>
<td>0.35 ± 0.02 (40)</td>
</tr>
<tr>
<td>WTP<sup>IP1</sup>;Slo4</td>
<td>11.59 ± 0.94 (10)</td>
<td>1.45 ± 0.22 (13)</td>
<td>0.28 ± 0.02 (13)</td>
</tr>
<tr>
<td>mut<sup>IP1</sup>;Slo4</td>
<td>13.29 ± 1.11 (15)</td>
<td>1.68 ± 0.29 (10)</td>
<td>0.34 ± 0.02 (10)</td>
</tr>
<tr>
<td>WTP<sup>IP1</sup>;TEA</td>
<td>10.39 ± 0.84 (14)</td>
<td>1.17 ± 0.19 (14)</td>
<td>0.24 ± 0.02 (10)</td>
</tr>
<tr>
<td>mut<sup>IP1</sup>;TEA</td>
<td>11.72 ± 0.48 (38)</td>
<td>1.55 ± 0.17 (32)</td>
<td>0.28 ± 0.01 (34)</td>
</tr>
</tbody>
</table>

Slo4 genetic background, or TEA application, abolish the effects of Slob on EJC amplitude and on the frequency and amplitude of the mEJC. As indicated by the asterisks, the mut^{IP1} group is significantly different from the WTP^{IP1} group, with respect to all parameters measured. The inhibition of dSlo either genetically (Slo4 flies) or pharmacologically (1 mM TEA) eliminates the differences and makes Slob knockout and WT flies statistically indistinguishable. Mean ± SEM is shown for each group. Cell numbers are in parentheses. For averaged EJC traces and sample mEJC traces, see Fig. 8.

Figure 9

Targeted nerve expression of Slob-RNAi enhances evoked and spontaneous synaptic transmission. (A) Sample EJC traces from one control line and two Slob-RNAi lines. The Slob-RNAi_{nerve} line expresses Slob-RNAi in nerves, whereas the Slob-RNAi_{muscle} line expresses Slob-RNAi in muscle. (B) Pooled data. Peak amplitude of EJC is increased significantly when Slob-RNAi is expressed in nerves (black bar) compared with the uncrossed WT¹ control (white bar). EJC in the Slob-RNAi_{muscle} line (gray bar) is not significantly different from the EJC in the WT¹ control. (C) Sample mEJC traces from one control line and two Slob-RNAi lines. (D) Pooled data. Frequency and amplitude of mEJCs are increased significantly in the Slob-RNAi_{nerve} line (black bar), but not in the Slob-RNAi_{muscle} line (gray bar), compared with the uncrossed WT¹ control (white bar). Refer to Materials and methods for the definition of the WT¹ line.

Ma et al. 233
Presynaptic Slob is critical for the regulation of synaptic function

To determine whether presynaptic or postsynaptic Slob participates in the regulation of synaptic transmission, we constructed Slob-RNAi flies in which Slob is knocked down either in nerve or in muscle (Slob-RNAinerve and Slob-RNAimuscle, respectively). Slob knockdown in the nerve, but not in the muscle, leads to significantly increased EJC peak amplitude (Fig. 9, A and B). Similarly, Slob knockdown in the nerve leads to enhancement in

Figure 10. Rescue of Slob in nerves rescues the alterations in synaptic transmission. (A) Sample EJC traces from WT, Slob-null, and two rescue lines (rescue in muscle or nerve, respectively). (B) Pooled data. The enhanced EJC peak amplitude in Slob-null flies (black bar) is rescued by adding Slob back to the presynaptic nerve (dark gray bar), but not to the postsynaptic muscle (light gray bar). (C) Sample mEJC traces from WT, Slob-null, and two rescue lines (rescue in muscle or nerve, respectively). (D) Pooled data. Enhanced frequency and amplitude of non-evoked synaptic transmission (black bars) are rescued by adding Slob back to the presynaptic nerve (dark gray bars), but not to the postsynaptic muscle (light gray bars).
depends on calcium, we asked whether the regulation of synaptic transmission by Slob is calcium dependent. As shown in Fig. 11 A, Slob ablation alters the EJC amplitude over a range of calcium concentrations, although the effect of Slob appears to be less or absent at the highest calcium concentration tested (2 mM). Slob ablation elicits similar changes in mEJC amplitude (Fig. 11 B) and frequency (Fig. 11 C) at all the calcium concentrations we tested, indicating that the effect of Slob on spontaneous synaptic transmission is calcium independent. Finally, we asked if the enhanced synaptic transmission could be caused by changes in the size or other properties of the postsynaptic muscle cell. We analyzed the input resistance (Fig. 11 D) and capacitance (Fig. 11 E) of muscle cells and found no significant difference in either between the Slob-null and control flies.

DISCUSSION

In previous studies, we found that Slob is expressed at NMJ and in many brain areas, and that Slob modulates the voltage dependence of dSlo activation when the two proteins are expressed together in heterologous cells (Zhou et al., 1999; Jaramillo et al., 2004, 2006; Zeng et al., 2005). Furthermore, in vivo patch recordings

Figure 11. Calcium dependence of synaptic transmission, and postsynaptic cell properties, in Slob-null and WT flies. (A–C) Slob modulates various aspects of synaptic transmission: (A) EJC amplitude, (B) mEJC amplitude, and (C) mEJC frequency over a range of calcium concentrations. Input resistance (D) and cell capacitance (E) of the postsynaptic muscle cells are similar in WT^P41 (white bar) and mut^IP1 (black bar) lines.
Slob regulates presynaptic function through dSlo isoform shifts the dSlo conductance–voltage relation—modulating presynaptic dSlo channels. It is likely that Slob regulates the activity of the ether-a-go-go channel, to which Slob previously (unpublished data) that Slob does not change the mEJC frequency reflects the rate of spontaneous transmitter vesicle exocytosis, our results suggest that in the absence of Slob, there is an increase in the probability of transmitter exocytosis from presynaptic boutons. This is supported by the observation that adding Slob back presynaptically rescues all aspects of the synaptic phenotype, and the additional finding that disrupting presynaptic Slob is necessary and sufficient to elicit the phenotype. In addition, when we add Slob back only to the postsynaptic muscle cells, the elevated spontaneous and evoked synaptic transmission cannot be rescued, suggesting that the actions of Slob in regulating NMJ synaptic transmission are exclusively presynaptic.

The dSlo channel is important for a variety of functions, including cell membrane repolarization. For example, in larval muscle cells lacking dSlo, action potential occurrence is facilitated (Singh and Wu, 1990). We used both genetic and pharmacological disruption of dSlo to examine its role in the synaptic actions of Slob. We find that synaptic transmission, measured in either the Slo4 genetic background or in the presence of a low concentration of TEA, is no longer affected by the manipulation of Slob expression. Collectively, these data imply that the effect of Slob on synaptic transmission is via its actions on dSlo. Although the selectivity of TEA for dSlo channels has not been tested in vivo, our conclusion that dSlo is important for the synaptic actions of Slob is supported strongly by the finding that both genetic and pharmacological inhibition of dSlo eliminate the effects of Slob mutation. Interestingly, we find that TEA predominantly alters EJC kinetics, whereas the Slo4 mutation that disrupts dSlo expression (Atkinson et al., 1991) primarily causes an increase in EJC amplitude. We have not investigated this apparent discrepancy, but it might reflect compensatory mechanisms in Slo4 flies that are not seen with acute channel block by TEA. Finally, we found (unpublished data) that Slob does not change the activity of the ether-a-go-go channel, to which Slob also binds (Schoopperle et al., 1998). Thus, it seems likely that Slob regulates Drosophila NMJ function by modulating presynaptic dSlo channels.

Previously, we found that the predominant Slob57 isoform shifts the dSlo conductance–voltage relationship to more depolarized voltages and leads to channel inactivation and a faster deactivation of dSlo (Zeng et al., 2005). These data, collectively, suggest that there is likely elevated dSlo activity in Slob-null and RNAi flies. This is confirmed by our finding that the G-V relationship in PI neurons is shifted in the hyperpolarizing direction in Slob-null and RNAi flies (Shahidullah et al., 2009). How might elevated activity of neuronal dSlo lead to enhanced synaptic transmission? It is known that dSlo channel mutations cause a broadening of action potentials in Drosophila muscle cells (Elkins et al., 1986; Elkins and Ganetzky, 1988; Singh and Wu, 1990) and neurons (Saito and Wu, 1991). Inhibition of dSlo with TEA in WT flies increases the duration of the EJC (compare the durations of the WT traces in Fig. 8, A and B), consistent with a broadening of the presynaptic action potential. Although it is generally believed that elongated action potentials contribute to enhanced transmitter release, this is not always the case. For example, the shortening of presynaptic action potentials leads to increased neurotransmitter release and a larger excitatory junctional potential at the jellyfish NMJ (Spencer et al., 1989). In addition, mutation of dSlo in Drosophila can lead to an apparently anomalous reduction in transmitter release, manifested as a reduced excitatory junctional potential and EJC (Warbington et al., 1996). Similarly, the mutation of dSlo and Shaker together significantly reduces the EJC slope at the Drosophila NMJ (Gho and Ganetzky, 1992). Although such findings may be counterintuitive, they are entirely consistent with ours, which demonstrate reduced synaptic transmission when Slob is present and dSlo activity is thereby decreased. It is conceivable that compensatory mechanisms, for example changes in the expression or trafficking of dSlo or other potassium channels, contribute to the apparently anomalous synaptic phenotype in Slob-null flies. In addition, the calcium influx that is necessary for neurotransmitter release will be influenced profoundly by such factors as calcium channel inactivation and by the driving force on calcium while the voltage-dependent calcium channels are open. Slob, by increasing action potential duration (Shahidullah et al., 2009), may increase calcium channel inactivation and anomalously decrease calcium influx, as has been seen previously (Spencer et al., 1989; Warbington et al., 1996). Interestingly, in spite of the fact that dSlo is a calcium-dependent channel, we find that the actions of Slob (via dSlo) are largely independent of the extracellular calcium concentration. A full understanding of the synaptic actions of Slob at the larval NMJ may require a detailed examination of calcium dynamics in the presynaptic nerve terminals.

Another protein that interacts with Slob, 14-3-3, influences many physiological functions in flies, including learning, Ca2+-regulated exocytosis, and more (Morgan and Burgoyne, 1992; Skoulakis and Davis, 1996; Broadie...
et al., 1997; Zhou et al., 1999). One of these functions, the regulation of the dSlo channel, depends on 14-3-3 binding to dSlo via Slob (Zhou et al., 1999). Thus, the absence of 14-3-3 in the dSlo regulatory complex may also contribute to the abnormal synaptic function that we observe in Slob-null and RNAi flies. It is evident that further in vivo experiments will be necessary to determine the precise role of the dSlo-Slob–14-3-3 regulatory protein complex in the modulation of synaptic transmission.

We are grateful to Dr. Amita Seghal and her laboratory for sharing fly lines and for insightful advice on fly crossings. We thank Dr. Zhiping Nie for expert advice on larval dissection and staining, and Hong Fei for help with fly crosses and some of the immunostaining experiments.

This work was supported by a grant to I.B. Leviatan from the National Institutes of Health.

Angus C. Nairn served as editor.

Submitted: 25 March 2010
Accepted: 13 January 2011

REFERENCES

Sun, B., and P.M. Salvaterra. 1995. Characterization of nervana, a Drosophila melanogaster neuron-specific glycoprotein antigen

Ma et al. 237

Downloaded from on June 15, 2017
recognized by anti-horseradish peroxidase antibodies. *J. Neurochem.*
65:434–443. doi:10.1046/j.1471-4159.1995.65010434.x
Tseng-Crank, J., C.D. Foster, J.D. Krause, R. Mertz, N. Godinot,
T.J. DiChiara, and P.H. Reinhart. 1994. Cloning, expression,
and distribution of functionally distinct Ca(2+)-activated K+
doi:10.1016/0896-6273(94)90418-9
Ueda, A., and C.F. Wu. 2006. Distinct frequency-dependent regu-
lation of nerve terminal excitability and synaptic transmission by
IA and IK potassium channels revealed by Drosophila Shaker
JNEUROSCI.0862-06.2006
Warbington, L., T. Hillman, C. Adams, and M. Stern. 1996. Reduced
transmitter release conferred by mutations in the slowpoke-
encoded Ca2(+)-activated K+ channel gene of Drosophila. *Invert.
Neurosci.* 2:51–60. doi:10.1007/BF02336660
cium-activated potassium channels. *J. Comp. Physiol. A Neuro-
2005. The amino terminus of Slob, Slowpoke channel binding
protein, critically influences its modulation of the channel. *J. Gen.
Zhou, Y., W.M. Schopperle, H. Murrey, A. Jaramillo, D. Dagan, L.C.
Griffith, and I.B. Levitan. 1999. A dynamically regulated 14-3-3,
Slob, and Slowpoke potassium channel complex in Drosophila
S0896-6273(99)80739-4