Impulse Propagation at the
Septal and Commissural Junctions of
Crayfish Lateral Giant Axons

A. WATANABE and H. GRUNDFEST

From the Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, and the Marine Biological Laboratory, Woods Hole. Dr. Watanabe's present address is Department of Physiology, Tokyo Medical and Dental University

ABSTRACT Transmission across the septal junctions of the segmented giant axons of crayfish is accounted for quantitatively by a simple equivalent circuit. The septal membranes are passive, resistive components and transmission is ephaptic, by the electrotonic spread of the action current of the pre-septal spike. The electrotonic spread appears as a septal potential, considerably smaller than the pre-septal spike, but usually still large enough to initiate a new spike in the post-septal segments. The septal membranes do not exhibit rectification, at least over a range of ±25 mv polarization and this accounts for their capacity for bidirectional transmission. The commissural branches, which are put forth by each lateral axon, make functional connections between the two axons. Transmission across these junctions can also be bidirectional and is probably also ephaptic. Under various conditions, the ladder-like network of cross-connections formed by the commissural junctions can give rise to circu-propagation of impulses from one axon to the other. This can give rise to reverberatory activity of both axons at frequencies as high as 400/sec.

INTRODUCTION

The discovery of segmented septate giant axons in crayfish (55) and earthworm (76) raised a new type of problem regarding the nature of transmissional processes. Like other giant axons of invertebrates (cf. reference 86) the septate nerves arise by fusion of small fibers of many cells. In the septate axons, however, the fused process originates from a segmental group of cells and the fiber produced in each segment abuts its neighbors in the segments fore and aft. Although in some forms the axons of several segments may fuse, in crayfish the axons of the individual segments are separated by membranes or septa. The membranes have been studied with the electron microscope recently by Hama (48). Unlike the septal surfaces of earthworms (47, but cf. reference 54) those of the crayfish are covered by Schwann cells and connective tissues.
tissue. They form a layer about 2 \(\mu \) thick in the crayfish. There are occasional patches or "windows," however, where the two axonal membranes come together to lie only about 100 A apart.

It was inferred (55, 76) that the segmented giant axons, which run the length of the animal, were through conducting systems of considerable importance to nervous functioning. The septa appeared to be so different in structure from synapses that Johnson (55) thought they also represented a different mode of transmissio

Electrophysiological data demonstrated that the segmented axons conducted impulses in both directions in earthworm (14, 24, 74) and in crayfish (85). These findings emphasized the difference between the bidirectional septa and unidirectional synapses, and the former were termed "unpolarized synapses" (cf. reference 15). Wiersma (85) noted that transmissio

Previous studies in this laboratory with microelectrode recordings from the septate giant axons of earthworm and crayfish were primarily concerned with their spikes and with the role of the postsynaptic potentials (p.s.p.'s) that are recorded from these axons (57–59). Such evidence as bore on transmission across the septa indicated that it was ephaptic (36), the action current from an excited segment apparently spreading electrotonically across the septum, as it also does along single nerve or muscle fibers. Since a response of the neighboring segment thus is evoked by electrical local circuit excitation, ephaptic transmission thereby differs fundamentally from synaptic transmission, which involves electrically inexcitable postsynaptic electrogenesis (34, 36).

The experiments described in the present paper were designed to study the transmissio

Another bidirectional, and probably ephaptic system, was also found to occur at the commissural junctions between the homologous segments of the two lateral giant fibers. Thus, impulses can propagate not only from segment to segment within each axon, but can also travel from one axon to the other along the ladder of cross-couplings made by the commissural branches. These connections can give rise to reverberatory repetitive activity of both lateral axons at a high frequency.
METHODS

Relatively large crayfish were selected for these experiments. After removing the dorsal exoskeleton and the muscles overlying the ventral nerve cord, the latter was carefully dissected free in the stretch from the middle of the thorax to the 6th abdominal ganglion. On its removal from the animal, the nerve cord was further cleared of muscle fragments and loose connective tissue under a binocular microscope. It was then placed in a trough on a lucite plate. Sunk into the floor of the trough were several pairs of fine chlorided silver wires for stimulating and recording. The nerve cord was fixed at both ends and was also held down by two partitions across the trough formed out of soft vaseline. Thus, the chamber was divided into three well insulated parts. Stimulation and recording with the external electrodes could take place in each part or across the partition with minimal spread of current and with relatively little shunting, although the tissue was covered with crayfish saline (79).

The 2nd abdominal ganglion was usually chosen for penetration of axons with microelectrodes. The axons at the level of this ganglion were larger than in the more caudal parts, while the ganglion was still small enough to permit good transillumination. The ganglion was placed in the middle portion of the trough. Part of the connective tissue was removed after the nerve cord was fixed in the holder.

The four giant axons of the nerve cord were visualized in darkfield illumination (Fig. 1). Only the two lateral fibers are septate and segmental in origin. The septa run diagonally forward from the mesial aspects of the axons, so that the apposition of two segments occurs over a considerable length of the axon. Some septa could be observed stretching for more than 800 μ. Electrophysiological evidence also showed that the segments overlap by as much as 500 μ. Thus, the inclination of the septa to the long axis of the axon was much less than 45° (85). However, the angle probably depended upon the degree of stretch applied to the nerve cord when it was fixed in its holder. A commissural branch (55) runs medially from the caudal base of each segment. The branches from the two lateral giant axons meet in the midline.

Glass microcapillary electrodes filled with 3 M KCl (56, 68) were employed for intracellular recording and for applying polarizing currents intracellularly. As many as four microelectrodes were inserted into a single axon in some experiments. In others, both lateral giant axons were impaled for simultaneous registration of their activity. A few comparisons were also made between the lateral and medial giant axons and on occasion some smaller axons of the nerve cord were impaled without visual control.

The manipulators, stimulators, amplifying and recording equipment were standard for the laboratory and have been described elsewhere (2, 9, 33). Since the spike of the crayfish giant axons is very brief and has a steep rise (cf. Fig. 2), accurate recording of the amplitude and form depended upon careful adjustment of the neutralizing capacity of the input amplifiers. Those in present use could be adjusted to have a rise time of 10 to 15 μsec. with the high resistance (10 to 25 megohm) microelectrodes employed in the present work. The frequency response of the system was monitored continuously by injecting a square pulse calibration at the beginning of each sweep.
as shown in Fig. 3D. For the experiments in which currents were applied to the preparation intracellularly, each microelectrode recording was differential against an external electrode so as to eliminate common mode interference.

The experiments were carried out at room temperatures ranging from 18 to 24°C. The crayfish were obtained at the different seasons from suppliers in Louisiana and Wisconsin. Some of the animals were identified as _Procambarus clarkii_, but others of unidentified species were also used. However, no consistent differences were observed between batches from different localities. The work covered a period which included two summers (1959 and 1960), but no seasonal differences were observed.

RESULTS

A. _The Electrogenic System_

THE RESTING POTENTIAL. The resting potentials ranged from 70 to 90 mv, inside negative. These values are similar to those found in other studies.
on crayfish axons (22, 29, 44, 57). It is likely that the smaller values frequently were from impaired fibers. Axons with the lower resting potentials had smaller spikes and sometimes conduction into a segment that had a low resting potential was blocked. Penetration of the giant axons is hampered by their thick connective tissue sheaths. It may therefore be expected that penetrations often caused damage.

![Diagram](https://example.com/diagram.png)

FIGURE 2. Responses of a lateral giant axon to intracellularly applied currents. A–E, from one preparation. Current monitoring on lower trace, upward deflection denotes outward, depolarizing current. A, B, weak hyperpolarizing and depolarizing currents. C, a local response was evoked by a stronger depolarizing current. D, E, spikes evoked by stronger stimuli. F, another fiber, showing superimposed registration of five traces with progressively increasing depolarizing currents. Note the undershoot following spike elicited during sustained depolarization. Calibrations 50 mv in this and in subsequent figures, unless otherwise specified.

RESPONSES TO INTRACELLULAR STIMULI A graded local response was evoked by depolarizations exceeding about 15 mv (Fig. 2C; cf. also Figs. 18 and 20). The directly evoked spikes arose at critical firing levels ranging between 30 and 50 mv in different axons. They had a maximum rate of rise of up to 1200 v/sec. and attained a peak of up to 150 mv in axons which had large resting potentials. The spikes were brief, about 200 to 500 μsec., measured at their half-amplitude level. When they were evoked by sustained depolarization the spikes had a marked undershoot. The latter was never seen when the spikes were evoked by brief stimuli or when a response arose by propagation into the segment. Instead, there was then an after-depolarization
Except for the special circumstances of reverberatory cross-excitation between the two lateral giant axons, which will be described below, long lasting depolarizing stimuli usually evoked only a single spike (cf. Fig. 18B).

Figure 3. The action potentials of lateral giant axons evoked by stimulating the nerve cord. A, "pre-septal" spike recorded before transmission across the septum. The spike ends with a depolarizing after-potential. B, the "post-septal" spike of the same axon, recorded after transmission across the septum. The slowly rising initial portion is the "septal potential" by which the spike of the post-segment was initiated. Arrow shows the inflection at about 45 mv depolarization produced by the septal potential. The opposite lateral giant axon was destroyed for these records. C, another preparation in which the pre-septal spike was initiated by excitation from the opposite lateral giant axon. The small initial deflection is the electrotonic potential of the larger depolarization at the distant junctional site of the commissural branches. D, E, the depolarizing after-potential is seen at slower recording speeds and at different amplifications. Each record is of two superimposed sweeps with and without a response. The zero reference of the recording is shown as the upper trace in D. A 50 mv, 1 msec. calibrating pulse to check the neutralization of the input capacity is shown at the beginning of the trace in this record. F, three superimposed records, respectively, without a stimulus; with a weak stimulus which evoked only a postsynaptic potential; and with a stronger stimulus which evoked the conducted spike.

Spikes and Prepotentials Associated with Propagated Responses

The spikes evoked in a segment on stimulating the nerve cord some distance away differed in form depending on the relation between the origin of the spike and the recording site. When the recording microelectrode was distant...
from the septum, the spikes had a smooth configuration, as did the directly evoked spikes, no matter whether the propagation into the segment was rostrad or caudad. The same form was also obtained when the microelectrode was close to the septum and the spike was recorded before traversing the septum (i.e., it was "pre-septal"; Fig. 3A).

When the spike was "post-septal," i.e. recorded just after passage across the septum, its rising phase had an initial slow part, with the steeper phase arising from a more or less distinct notch (B). As will be described below, the initial "septal potential" is responsible for transmission across the septum. A smaller prepotential, usually no more than about 10 mv in amplitude,
sometimes appeared (C) when the recording microelectrode was just rostrad to the septum. This potential is associated with transmission across the commissural branches of the activity initiated at a lower threshold in the opposite lateral giant axon (Fig. 4A). When both axons were excited by a stronger stimulus, the spike at the recording site arose earlier, by conduction within the axon itself (Fig. 4B). The conduction velocity ranged between 7.6 and 13.8 m/sec. (mean 10.6 ± 1.1 m/sec.). These values agree with earlier data (85).

AFTER-POTENTIAL. At least part of the after-depolarization which succeeded the propagated spike was an after-potential lasting about 20 msec. (Fig. 3D, E). This potential usually developed smoothly out of the falling phase of the spike, but occasionally a peak of some 5 to 10 mv was produced by a small dip of the falling phase. The depolarizing ("negative") after-potential decreased in amplitude when the segment was depolarized by applied currents, and on depolarizations of somewhat over 10 mv, the sign of the after-potential reversed (Fig. 5B, C) so that it became an undershoot (cf. also Fig. 2D, F). The amplitude and duration of the after-potential increased when the axon was hyperpolarized (Fig. 5D). The early dip, if it was present, then disappeared. Thus, the after-potential is probably generated by increased conductance for K⁺ or Cl⁻ (39). Presumably the after-potential is caused by the same process which is manifested as rectification in the axons (cf. Figs. 11 and 13). A similar after-potential, but markedly smaller in amplitude, also follows the spikes of medial giant fibers.

P.S.P.'s Depolarization of another origin (Fig. 3F) was also often observed. It could be made to appear without the spike in either lateral axon by carefully grading the stimulus to the nerve cord. When, on increasing
the stimulus, a spike was evoked, it appeared earlier than the independent potential, indicating that the excitant pathway for the latter had a lower conduction velocity than did propagation in the lateral giant axon. These potentials, which are p.s.p.'s that probably develop on stimulation of smaller fibers, have been observed in the motor giant axons (30, 44) as well as in lateral giant axons of earthworm (59). Their occurrence in the crayfish lateral giant axons was described in earlier work from this laboratory (57, 58).

MEMBRANE CONSTANTS

Electric properties of three lateral axons are shown in Table I. These cable constants of the membranes (52, 64) were estimated from data obtained with intracellularly applied pulses (cf. reference 27). However, because the lateral axons have septal divisions and commissural branches, the cable equations do not apply precisely. Further inaccuracy results from the considerable variation in the diameter of the axons, which could be observed even over a length of only a few millimeters, or within the limits of the calculated length constant.

<table>
<thead>
<tr>
<th>Fiber</th>
<th>(d)</th>
<th>(\lambda)</th>
<th>(r_e) (10^5\Omega)</th>
<th>(r_i) (10^5\Omega/mm)</th>
<th>(r_m) (10^5\Omega/mm)</th>
<th>(R_e) (\Omega/cm)</th>
<th>(R_m) (\Omega/cm^2)</th>
<th>(\tau_m)</th>
<th>(C_M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>100</td>
<td>2.81</td>
<td>1.74</td>
<td>1.22</td>
<td>9.84</td>
<td>94</td>
<td>3.1</td>
<td>1.9</td>
<td>0.61</td>
</tr>
<tr>
<td>II</td>
<td>100</td>
<td>3.36</td>
<td>1.56</td>
<td>0.97</td>
<td>10.5</td>
<td>75</td>
<td>3.3</td>
<td>1.2</td>
<td>0.35</td>
</tr>
<tr>
<td>III</td>
<td>100</td>
<td>1.73</td>
<td>1.13</td>
<td>1.32</td>
<td>5.92</td>
<td>102</td>
<td>1.2</td>
<td>0.98</td>
<td>0.79</td>
</tr>
</tbody>
</table>

\(d\), diameter of axon; \(\lambda\), length constant; \(r_e\), effective resistance between current electrode and ground return; \(r_i\), internal resistance of 1 mm of the axon; \(r_m\), membrane resistance of 1 mm of axon; \(R_e\) and \(R_m\), specific resistances of the axoplasm and membrane respectively; \(\tau_m\), \(C_M\), membrane time constant and capacity, respectively.

B. Septal Transmission

COMMUTATIVE NATURE OF THE SEPTAL POTENTIAL. As already noted, when two microelectrodes were inserted close together, but on opposite sides of the septum, the responses at the two sites differed, depending upon the direction of the impulse relative to the recording electrodes (Figs. 3 and 4). No matter in which direction the impulse was travelling the post-septal spike always developed with a slow initial phase and was therefore markedly delayed in transmission (Fig. 6). Under the conditions of the experiments, some damage was probably produced by the microelectrode penetrations and the rising phase of the post-septal spike usually had a marked notch.

In Fig. 6A the pre-septal spike was in the rostrad segment. The post-septal
response was recorded only 50 μ away in the caudad segment. The amplitudes and durations of the spikes differed sufficiently so that the reversed sequence in Fig. 6B, with the spike of the caudal segment preceding and produced by stimulating the caudal part of the nerve cord, is clearly evident. The critical depolarization for evoking the post-septal spike was nearly equal in the two cases, a finding which is in keeping with the fact that the critical firing level on intracellular depolarization (Fig. 2) was relatively constant in different segments in all the axons that were examined.

SEPTAL DELAYS The occurrence not only of a septal delay, but also of a systematic difference, with delay for conduction toward the tail smaller than that in the opposite direction, was observed in most of the experiments in
which the matter was examined (Table II). In the experiment of Fig. 6 the two delays were 130 μsec. and 250 μsec. respectively, when measured at a level 50 mv positive to the resting potential. The difference may be seen to be associated with a more gradual rise in the beginning of the post-septal spike when the impulse was travelling toward the head (Fig. 6B). The septal delay was not due to conduction time along the axon; within the limits of measurement on the living axon the diameter at the rostral and caudal ends is the same. The delays were not directly related to the distance apart of the two electrodes. In one case (fiber X of Table II) the pre-septal recording electrode was actually 280 μ behind the post-septal, advantage being taken in this experiment of a clearly visible stretch of oblique contact between the two segments.

Site of Origin of the Septal Potential The initial or “septal” phase of the post-septal response was frequently obscured by the rapidly rising spike, as in the three preparations of Table II in which rostrocaudal delay ranged between 40 and 70 μsec. When the delays were long, recording at two different sites in the post-septal segment showed that the septal component of the response diminished with distance (Fig. 6C). The simultaneously recorded spikes also differed at the two sites, but the one more distant from the septum was slightly the larger. Thus, while the spike arose regeneratively by sequential local circuit excitation within the segment, the initial septal component apparently occurred only at the septal region.

Spike Initiation by the Septal Potential Frequently, damage prevented initiation of a post-septal spike and the potential of the damaged

Table II

<table>
<thead>
<tr>
<th>Fiber</th>
<th>Distance between electrodes μ</th>
<th>Rostrocaudal conduction μsec.</th>
<th>Caudorostral conduction μsec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>25</td>
<td>50</td>
<td>160</td>
</tr>
<tr>
<td>II</td>
<td>50</td>
<td>70</td>
<td>120</td>
</tr>
<tr>
<td>III</td>
<td>50</td>
<td>210</td>
<td>220</td>
</tr>
<tr>
<td>IV</td>
<td>50</td>
<td>210</td>
<td>300</td>
</tr>
<tr>
<td>V</td>
<td>50</td>
<td>130</td>
<td>250</td>
</tr>
<tr>
<td>VI</td>
<td>100</td>
<td>40</td>
<td>140</td>
</tr>
<tr>
<td>VII</td>
<td>200</td>
<td>210</td>
<td>250</td>
</tr>
<tr>
<td>VIII</td>
<td>350</td>
<td>240</td>
<td>410</td>
</tr>
<tr>
<td>IX</td>
<td>370</td>
<td>210</td>
<td>180</td>
</tr>
<tr>
<td>X</td>
<td>-280</td>
<td>210</td>
<td>160</td>
</tr>
</tbody>
</table>

The potentials of fiber V are shown in Fig. 6A and B. In fiber X the electrode in the rostral segment was 280 μ behind that in the caudal segment.
FIGURE 7. Changes in the post-septal response evoked by a stimulus to the nerve cord during hyperpolarization of the segment by an intracellularly applied current. The initial resting potential is shown by the broken line. A, before applying current. Transmission across the septum occurred with little delay. B, the delay was marked, and (C) the spike was abolished by small increases in the current. Note the increase in the after-potential following the hyperpolarized spike (B) and the persistence of a smaller septal after-potential when the spike was eliminated. Further hyperpolarization of the segment at first shortened and diminished the falling phase of the septal potential slightly (D), but the potential augmented when the segment was hyperpolarized still more strongly (E). Calibrating pulse 50 mv and 1 msec.

segment was only a septal potential (Fig. 6D). An indication that the septal potential is itself the excitant for the post-septal spike is also shown in Fig. 6. The transmitted spike arose at the same level of depolarization by the septal potential (E) as did a directly evoked spike from intracellularly applied
depolarization (F). In the latter case relative refractoriness in the directly excited segment resulted in failure of the post-septal spike to develop. The septal potential remained, its amplitude not significantly different from the critical level of depolarization from which the direct spike arose.

Block of Septal Transmission by Hyperpolarizing the Post-septal Segment When the post-septal segment was hyperpolarized (Fig. 7), the spike was progressively delayed on the septal potential (B) and was eventually blocked (C–E). The remaining post-septal potential at first retained a component of local response (C). Production of a local response of the electrically excitable membrane by a depolarizing p.s.p. also occurs during relative refractoriness or by hyperpolarization of eel electroplaques (1) and other cells (36). The local response of the axon was eliminated by further hyperpolarization leaving a “pure” septal potential (D). However, with further increase of the hyperpolarization (E) the septal potential also increased in...
amplitude as does a p.s.p. (36). The shape of the septal potential also appeared to resemble that of p.s.p.’s of many types of cells (23, 36). Its rise time was about 0.5 msec., but a longer lasting falling phase led to a total duration of about 5 msec. The relation between the septal potential and the membrane potential was approximately linear, with a slope of 0.3 to 0.4 (Fig. 8). Slopes of similar magnitude also occur in the case of p.s.p.’s of hyperpolarized cells (cf. references 40, 43).

Figure 9. Effects of membrane hyperpolarization on pre- and post-septal potentials. Recording microelectrodes were inserted at each side of a septum. A microelectrode for polarizing currents was also inserted rostrad to the septum. The records show responses evoked by stimulating the rostral portion of the nerve cord (A) and the caudal (B) during application of a constant hyperpolarizing current. The initial resting potentials of the two segments are shown by broken lines. During the hyperpolarization of the rostral segment there was also a smaller hyperpolarization of the caudal segment which is registered on the upper trace. A, the pre-septal spike of the strongly hyperpolarized rostral segment was very large and initiated a spike in the caudal segment with a delay less than 100 μsec. measured between the two peaks. The post-septal spike was also large. B, stimulation of the caudal part of the nerve cord evoked a smaller spike in the caudal segment. Transmission across the septum was blocked, a septal potential remaining. Calibrating pulse 50 mV and 1 msec.

Effects of hyperpolarization on pre- and post-septal spikes. A constant hyperpolarizing current which was applied to the rostral segment (Fig. 9) caused a smaller hyperpolarization in the caudal segment. When the rostral nerve cord was stimulated, the spike which invaded the strongly hyperpolarized pre-septal region was very large (A, lower trace). Transmission across the septum was also very effective. The latency of the post-septal spike (upper trace) was so brief that its origin on the septal potential was difficult to discern. Transmission in the opposite direction was blocked, however (B). Although the impulse invaded the pre-septal (now the caudal and the less strongly hyperpolarized) segment, its spike (upper trace) was
smaller than the pre-septal spike in the more strongly hyperpolarized segment. Excitability of the more hyperpolarized membrane of the rostrad segment was lower and the potential that resulted (lower trace) lacked a spike, although there may have been a component of local response on the septal potential. The post-septal potential started simultaneously with the large pre-septal spike in A. A slight delay which appears in B was probably due to the more slowly rising electrotonic potential produced by the smaller, less steeply rising spike. Synaptic latencies are usually about 0.5 msec. or more (36).

FIGURE 10. Electronic spread of potentials in either direction across the septum. Four electrodes were inserted close together, two on each side of the septum as in the diagram of Fig. 15. \(I_1, V_1 \) are the rostrad pair; \(I_2, V_2 \) are the caudad. \(A_1 \) and \(A_2 \), examples of the potentials recorded in the two segments for depolarizing and hyperpolarizing currents through \(I_1 \). \(B_1 \) and \(B_2 \) show similar records for currents through \(I_2 \).

C. Properties of Septal Membranes

Electrotonic spread of potential across the septum It is evident in Fig. 9 that hyperpolarization of one segment caused a considerable, though smaller, hyperpolarization of the nearby segment. This matter was investigated in detail in experiments such as those illustrated by Figs. 10 and 11. Two microelectrodes were inserted on each side of a septum. One of each pair was for applying current and the other for recording the membrane.
potential. The three simultaneously recorded traces of sequences A_1 and A_2 show the effects of applying depolarizing (A_1) and hyperpolarizing (A_2) pulses through the electrode rostral to the septum. The upper trace in each case represents the "cis-septal" recording electrode; the second trace is of the "trans-septal" potential; while the lowest trace shows the applied current. In B_1 and B_2 the traces represent the same registration, but the polarizing currents were now applied through the electrode caudal to the septum, and the cis-septal potential was that on the second trace.

These records show that electrotonic spread occurred in both directions across the septum, for both depolarizing and hyperpolarizing currents. The trans-septal potential spreading across the septum was considerably attenuated in comparison with the cis-septal potential, the attenuation being of the order of two- to four-fold when the depolarizing current was small. Since the length constant of the axon is 2 to 3 mm (Table I) and the electrodes were grouped within a distance of about 100 μ, the attenuation could not have

![Figure 11](https://example.com/figure11.png)

Figure 11. Current-voltage data obtained in a complete experiment from records like those of Fig. 10. Each inset diagram shows only the current electrode used for the relevant set of measurements. Left, I_1, varying, $I_2 = 0$; V_2 is the voltage of the trans-septal (caudad) segment. Right, I_2, varying, $I_1 = 0$; V_1 is the voltage of the trans-septal (rostro) segment. Depolarizations in upper right quadrant. The broken lines show the gradients at the origins. Their values are given in Table III (fiber I). Further description in text.
been due to losses in a simple linear cable conductor system. Rather, the septum appears to act as a barrier of low electrical resistance.

The data obtained in experiments such as that of Fig. 10 are shown as a family of four voltage-current curves in Fig. 11. On the left are plotted the data obtained when the polarizing current was applied to the rostrad segment, and on the right are the symmetrical data for currents applied to the caudad segment. The ratio of the gradients around the origin of the two curves in each graph is the attenuation factor for small polarizing currents. In the experiment of Fig. 11 this value was 2.7 when the current was applied in the rostrad segment and 2.4 for current in the caudad segment. Thus, the septal membrane is essentially a symmetrical resistance for current flow in either direction. However, the voltage-current relation showed non-linearities which began with relatively small polarizations in both directions.

Equivalent Circuit of Septate Axons In view of the symmetrical current distribution across the septum, it seemed feasible to represent the electrical properties of the axon by a relatively simple equivalent circuit (Fig. 12). For the steady state measurements of Figs. 10 and 11 capacitative elements could be neglected. The axonal membranes of the two segments are represented by resistances R_1 and R_2, coupled through the septal resistance S. This is essentially the same circuit as that used by Furshpan and Potter (29), except that the rectifier element of the coupling resistance at the lateral giant-motor giant junction could be omitted here.

Resistance of the Various Membranes Experiments like those of Fig. 11 may be analyzed in terms of the equivalent circuit of Fig. 12. I_1
divides into 2 branches: \(i_1 \) flowing through \(R_1 \) and causing the voltage drop \(V_1 \) and \(i'_1 \), which causes the voltage \(V'_1 \) on \(R_2 \). Similarly \(I_2 \) is subdivided into components \(i_2 \) and \(i'_2 \).

\[
i_1 = \frac{(R_2 + S)}{\Sigma R} \cdot I_1 \tag{1}
\]

\[
i'_1 = \frac{R_1}{\Sigma R} \cdot I_1 \tag{2}
\]

\[
i_2 = \frac{(R_1 + S)}{\Sigma R} \cdot I_2 \tag{3}
\]

\[
i'_2 = \frac{R_2}{\Sigma R} \cdot I_2 \tag{4}
\]

where

\[\Sigma R = R_1 + R_2 + S.\]

Accordingly

\[
V_1 = R_1 i_1 = \frac{R_1 (R_2 + S)}{\Sigma R} \cdot I_1 \tag{5}
\]

\[
V'_1 = R_1 i'_1 = \frac{R_1 R_2}{\Sigma R} \cdot I_1 \tag{6}
\]

\[
V_2 = R_2 i_2 = \frac{R_2 (R_1 + S)}{\Sigma R} \cdot I_2 \tag{7}
\]

\[
V'_2 = R_2 i'_2 = \frac{R_1 R_2}{\Sigma R} \cdot I_2 \tag{8}
\]

The gradients at the origins of the four curves of Fig. 1 are the differential coefficients of equations 5 to 8.

\[
dV_1 \over dI_1 = \frac{R_1 (R_2 + S)}{\Sigma R} \tag{9}
\]

\[
dV'_1 \over dI_1 = \frac{R_1 R_2}{\Sigma R} \tag{10}
\]

\[
dV_2 \over dI_2 = \frac{R_2 (R_1 + S)}{\Sigma R} \tag{11}
\]

\[
dV'_2 \over dI_2 = \frac{R_1 R_2}{\Sigma R} \tag{12}
\]
Thus, the calculations on the basis of the equivalent circuit of Fig. 12 predict that the slope of V_1' at the origin (Fig. 11, left) should equal that of V_2' (Fig. 11, right). The four slopes determined from each of six experiments, including that of Fig. 11, are shown in Table III. While dV_1'/dI_1 and dV_2'/dI_2 varied almost two fold, the values of the other two coefficients were very close, in good agreement with prediction. This fact indicates that the equivalent circuit of Fig. 12 is adequate for the present analysis.

In each experiment taking $R_1R_2/\Sigma R$ as the average of the values in columns 3 and 4 of Table III, R_1, R_2, and S were calculated by substitution into Equations 9 and 11. These calculated values are shown in columns 5 to 8 of Table III.

There was somewhat more than a twofold variation in the values of R_1 and R_2 obtained for the different preparations. This range is not unduly large in comparison with resistance measurements on other cells or the values obtained from the lateral giant axons by conventional methods (Table I). In addition to the usual biological variation it is also likely that damage was produced by inserting four microelectrodes into a small region of axon. Since the septal membranes were intact the variation in their resistance due to this experimental factor was absent and this may account for the smaller spread of the values calculated for S (Table III).

Another test for the validity of the equivalent circuit of Fig. 12 is shown in Fig. 13, from an experiment on fiber I of Table III. The intracellular potential on one side of the septum was set by an appropriate current. The voltage on the other side was then made the same, within 1 mv, by adjusting the current on that side. Since the voltage drop across S was then zero, $V_1 = I_1R_1$ and $V_2 = I_2R_2$. The agreement between the data and the slopes of the lines drawn from the calculated values of R_1 and R_2 (Table III) is quite satisfactory, and lends further support for the equivalent circuit of Fig. 12. It may be noted
that in Fig. 13 deviation from the linear voltage-current relations occurred at a depolarization of about 5 mv and at hyperpolarization of about 20 mv.

CURRENT-VOLTAGE RELATION OF THE SEPTUM The equivalent circuit of Fig. 12 was also used to obtain the current-voltage relation across the septum from the data of Figs. 11 and 13. For current I_1

$$V_s = V_1 - V'_2$$

![Graph showing voltage-current relations across R_1 (right) and R_2 (left) when the potential across S was maintained at zero. The broken lines are the gradients calculated from the data of Fig. 11 (cf. also Table III) on the basis of the equivalent circuit of Fig. 12.]

However, the values of V_2 in Fig. 13 (left) which correspond to V'_2 of Fig. 11 (left) were produced by currents through I_2 that were equal to i'_2, the current through the septum in the experiment of Fig. 11 (left). In Fig. 14 these values are plotted as I_2 vs. V'_2 (filled circles). Another set of I_2-V'_2 pairings, but for current flow through S in the opposite direction, was obtained by the same procedure, from the data of Figs. 11 and 13 (right). They are plotted as the open circles of Fig. 14, in which the line has been drawn from the calculated value of S for fiber I in Table III.

The match between the different sets of data which is evidenced in Fig. 14 is remarkably good. It leads to the conclusion that the equivalent circuit
adopted (Fig. 12) is, indeed, adequate for the present experimental conditions, and that calculation of S (Table III, Fig. 14) using that circuit gives reliable values. Although the current-voltage relation of Fig. 14 does not cover a very wide range it is nevertheless possible to conclude that for values of $\pm 25 \text{mV}$ change in V, there is no appreciable deviation from linearity. This is in sharp contrast to the findings on the junction between the lateral giant and motor giant fibers (29). The deviations, which began at lower values of

![Figure 14. The current-voltage relation of the septal membranes. Calculations from the experiments of Figs. 11 and 13 (left) plotted as filled circles and of Figs. 11 and 13 (right) as the open circles. The line is the value of S for fiber I taken from Table III. Description in text.](image)

membrane polarization in Figs. 11 and 13, presumably resulted from reactions of the axonal membranes (39), not those of the septum.

D. Nature of Septal Transmission

EFFECTS OF THE MEMBRANE POTENTIAL OF THE POST-SEPTAL SEGMENT

With the validity of the equivalent circuit of Fig. 12 established, analysis is now possible of the data of experiments such as those of Figs. 7 to 9. During hyperpolarization of the post-septal segment there were three stages noted in the change of the post-septal response: (a) Delay and disappearance of the spike, leaving behind a post-septal potential. (b) Diminution in the amplitude of the latter. (c) Subsequent increase of the pure septal potential linearly with the post-septal hyperpolarization.

Qualitatively this behavior resembles that noted in the case of the post-junctional potential of the squid giant axon junction (45), which appears to
Figure 15. Relation between the amplitude of the septal potential and the membrane potential of the post-septal segment. The diagram shows the experimental arrangement. I_1 and I_2, electrodes for applying current; V_1 and V_2, voltage-measuring electrodes. Stimulating electrodes rostral on the nerve cord evoked a pre-septal spike which caused a septal potential and a spike in the caudal segment. The graph shows the changes in the septal potential as the caudal segment was hyperpolarized. The abscissa is the increase of internal negativity above the resting potential. Note that the origin of the graph is not shown. Filled circles, the potential of V_2 was changed by changing current in I_2. Open circles, the potential was changed by increasing I_1. Block of the post-septal spike occurred at A. The septal potential decreased until a minimum value (B) which was probably that of the "true" septal potential. Further hyperpolarization of the segment by increasing the current in I_2 led to a small rise in the septal potential (B to C). The rate of rise increased (C to D) when hyperpolarizing currents of increasing strength were applied through I_1. With the latter current fixed at its maximal value (D), the decreased hyperpolarization of the post-segment caused by progressively diminishing I_1 resulted in a decline of the septal potential. The rate of change (D to E) was like that in the reverse direction in B to C. The minimum septal potential (E) was much larger than at B and occurred at a different membrane potential. With a small further decrease in I_1, the septal potential evoked a local response (E to F) and the spike reappeared at F.

be an electrically inexcitable, postsynaptic potential (34, 36). However, extrapolations of the lines in Fig. 8 cross the zero of the ordinate at 96 and 100 mv depolarization; i.e., with the membrane potential inside positive. For depolarizing p.s.p.'s such as that of frog muscle endplate (18, 77), the squid
axon junction (45), and the frog sympathetic neuron (69), the reversal potential is at an inside negative value. The difference, as is shown in Figs. 15 and 16, is due to the fact that the amplitude of the septal potential does not depend directly on the amplitude of the membrane potential in the post-septal segment, but rather on the amplitude of the pre-septal spike; i.e., it is an electrotonic potential.

The experimental arrangement, as well as the data, is shown in Fig. 15. A spike was elicited in the giant axon by a stimulus to the nerve cord. It propagated into the pre- and post-septal segment, to be recorded by microelectrodes V1 and V2. The membrane potential on both sides of the septum could be changed by applying currents through electrodes I1 and I2.

A spike occurred in the post-septal segment until the latter was hyperpolarized by about 40 mV (A) by increasing the current in I2 (I1 = 0). The remaining potential continued to decrease in amplitude (as in Fig. 7) presumably because the local response of the post-segment was diminishing. At B the potential in the post-segment probably represented the septal potential. With increasing currents through I2 the potential increased again. The rate of increase was small, the septal potential rising by about 8 mV for an increase of 40 mV hyperpolarization. The regression line for B to C passes through the abscissa at a membrane potential of about 100 mV inside positive.

The current through I2 was now left constant at the maximum value and a hyperpolarizing current was also applied through I1. The increased negativity which the additional current caused in the post-segment was correlated with a larger increase in the post-septal potential (C to D).

The membrane polarization was then decreased by diminishing the current in I5, leaving that in I1 constant. The amplitude of the post-septal potential decreased (D to E) somewhat more steeply than it had increased in B to C. Further decrease of I5 now caused a rise in the post-septal potential (E to F) due to the initiation of a local response in the post-segment, and eventually a spike developed (F). Thus, the local response and spike reappeared in the post-segment when the membrane potential was much more negative than was necessary to cause block at the beginning of the sequence. The difference lies in the fact that the initial hyperpolarization was caused by applying a current through I2, and the final by a current through I1.

Relation between pre-septal spike and septal potential. The difference in effects stems from the dependence of the post-septal potential on the pre-septal spike. The points in Fig. 16 represent the amplitude of the septal potential for the segment B-E of the curve of Fig. 15, plotted against the amplitude of the pre-septal spike that was recorded at the same time (as in Fig. 9). Despite the complex form of the curve in Fig. 15, the relation in Fig. 16 was linear and the extrapolation of the regression line passed through a point only 2 mV from the origin. Thus, the amplitude of the post-septal
potential was directly proportional to the amplitude of the pre-septal spike. Accordingly, the post-septal potential appears to be elicited by the local current generated by the pre-septal spike and is therefore an electrotonic or ephaptic potential in the post-segment. A postsynaptic potential, in contrast, is caused by active participation of the postsynaptic membrane and is affected by the potential of the latter (23, 36).

THE SAFETY FACTOR OF SEPTAL TRANSMISSION To trigger a post-septal spike the amplitudes of the septal potentials ranged between 30 and 50 mv. From the slope of the regression line of Fig. 16 it may be calculated that to produce a septal potential of 30 mv required a pre-septal spike greater than 80 mv and for 50 mv the pre-septal spike had to exceed 125 mv. The amplitudes of the spikes recorded in the present work were 125 to 150 mv only in fibers with high resting potentials. Thus, the safety factor for the ephaptic transmission across the septum is probably relatively low.

The attenuation factor for the spike was calculated and compared with that from an electrotonic potential in five fibers (Table IV). In three of the five, including two in which the attenuation was measured in both directions, there was good agreement between the two values. For the five ratios obtained on these fibers the average was 1.0. In two other fibers the ratio was 1.5 and 1.6 respectively, with attenuation of the applied current being greater. Thus, despite the fact that reactance factors play some role in transmission of the brief pulse generated by a spike while only steady state conditions were measured in the transmission of applied current, the equivalent circuit of
Fig. 12 was nevertheless adequate to account for impulse transmission across the septum. Possible sources of the deviations in Table IV will be discussed below.

In one of the two fibers in which the currents flowing in both directions across the septum were measured, the rostrocaudal attenuation, though the larger for the applied currents, was the smaller for the spikes. The difference, though in the right direction, was not great enough, however, to establish that it might be responsible for the smaller septal delay in rostrocaudal conduction than in caudorostral conduction (Table II). As was noted in connection with Fig. 6, the rostrocaudally produced septal potential had a faster rise, which suggests that the capacities of the membranes of the two ends of the segments may have been somewhat different.

<table>
<thead>
<tr>
<th>Fiber No.</th>
<th>Direction of impulse</th>
<th>A</th>
<th>B</th>
<th>A/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>r → c</td>
<td>2.7</td>
<td>2.5</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>c → r</td>
<td>2.4</td>
<td>2.7</td>
<td>0.9</td>
</tr>
<tr>
<td>II</td>
<td>r → c</td>
<td>1.7</td>
<td>1.9</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>c → r</td>
<td>1.8</td>
<td>2.0</td>
<td>0.9</td>
</tr>
<tr>
<td>III</td>
<td>c → r</td>
<td>1.9</td>
<td>1.6</td>
<td>1.2</td>
</tr>
<tr>
<td>IV</td>
<td>c → r</td>
<td>3.2</td>
<td>2.2</td>
<td>1.5</td>
</tr>
<tr>
<td>V</td>
<td>c → r</td>
<td>3.0</td>
<td>1.9</td>
<td>1.6</td>
</tr>
</tbody>
</table>

E. Commissural Transmission

Spread of Electrotonic Potentials When hyperpolarizing currents were applied to one of the lateral giant axons a small potential was also observed in the homologous segment of the other fiber. The ratio between the magnitudes of the applied potential and the potential recorded in the opposite fiber was about 12:1. However, although the potential was small, the possibility of artifact could be excluded. When either recording electrode was withdrawn from the axon that it was impaling, the potential change that it had previously recorded, due to the applied current, disappeared, while that recorded with the remaining electrode was unaffected. Thus, coupling due to a common resistance between the recording microelectrodes and ground could be ruled out, and the spread must have been by electrotonic connections.

The small amount of the electrotonic spread precluded quantitative analysis.

1 Dr. Thomas G. Smith, while a medical student at the College of Physicians and Surgeons, took part in the work illustrated by the experiments of Figs. 18 and 20. We wish to thank him for permitting the use of the data.
of the properties of the commissural ephaptic junction comparable to that which was made for the septal junction. However, the observed ratio of the electrotonic spread is consistent with the conclusion that the junction occurs at the tips of the commissural branches. Electrotonic spread would be attenuated not only because of the distance of the junctional site from the trans-junctional recording electrode in the body of the axon, but also because of the electrical circuit conditions imposed by the anatomy.

The two commissural branches are small in diameter in comparison with the axons and they probably also taper to some extent in their distal portions. Thus, the resistance that the branches offer to spread of current must be comparatively high. Furthermore, the small current passing across the ephaptic junction must spread over a large surface in the body of the post-ephaptic axon, and the voltage change on the membrane of the axon must thereby be reduced.

Detailed study of the commissural junction therefore would require impalement of the fine branches, which probably would have to be carried out without visual control. Nevertheless, the fact that the commissural junction can transmit activity from one axon to the other (Figs. 4, 17-20) provides some information about the system. It is most likely that when transmission occurs both commissural branches generate spikes. If the critical firing level at the ephaptic junction is like that at the septum the junctional membranes of the commissural branches probably would have about the same resistance as do the septal membranes. Otherwise the junction would be relatively ineffective since even the septal junctions operate with a low safety factor.

Bidirectional Transmission Functional connections between the commissural branches of one segment permitting transfer of activity in either direction were demonstrated with experiments like that shown in Fig. 17 and analogous to those of Rushton (74) with external recordings for the earthworm. Stimuli were applied to both ends of the nerve cord, but conduction into the segment from the rostral direction was blocked in one axon and from the caudal side in the other axon. A recording microelectrode was inserted into each axon just rostrad to the septum, and in one axon (the left of the experiment of Fig. 17, and the lower fiber in the diagram), a second electrode was inserted for applying currents.

As was described in connection with Fig. 3, the pre-septal spike elicited in the left axon by a rostral stimulus (the earlier spike in Fig. 17A') had a smooth form. A similar, but delayed spike was recorded from the right axon and must have arisen by transfer of excitation across the commissural junction. That the transfer is bidirectional was shown by the responses of both axons on stimulating the caudal part of the nerve cord (B'). The spike of the right axon occurred first, but it was now of the post-septal type, with a pronounced
The spike of the left axon could only have arisen by transfer across the commissural junction and in its response there is clearly seen a small commissural potential in tempo with the spike of the right axon. On applying hyperpolarizing currents to the left axon the spike of the latter was progressively delayed (B, C) and finally blocked (D). The small commissural potential remained.

UNIDIRECTIONAL TRANSMISSION Frequently commissural transmission at a particular segmental level was only unidirectional. The experimental arrangement of Fig. 18 was the same as that for the experiment of Fig. 17,
except that the axons were intact, and a stimulus to the nerve cord excited both axons directly (C). The conduction velocity was slightly higher in the axon recorded on the upper traces, which was also the one impaled with a stimulating microelectrode. When an intracellular depolarization evoked a spike in this axon (B) the other axon did not respond, but a small commissural potential did develop. A stimulus to the nerve cord, applied during the relatively refractory period of the directly excited axon (E) now caused a reversed sequence of the responses in the two axons. The later response of the axon that had also been excited intracellularly arose by commissural transmission. When the stimulus to the nerve cord was delivered still earlier after the intracellular stimulus (F) transmission failed and a commissural potential did not develop.

Figure 18. Unmasking of a unidirectional commissural junction. Experimental arrangement as in Fig. 17, except that the axons were intact. Recording from the left axon on upper trace. A, weak intracellularly applied depolarizing stimulus to the left axon caused a local response. B, when a stronger stimulus evoked a spike there was a brief capacitative artifact in the other axon followed by a longer lasting but small commissural potential which did not produce a transmitted spike. C, the two axons responded to an external stimulation of the nerve cord, the left axon somewhat earlier than the right. D, the same timing was maintained when the cord stimulus was delivered about 8 msec. after a spike was evoked in the left axon by intracellular stimulation. E, at an interval of about 2.5 msec. the cord stimulus evoked a spike only in the right axon. A response occurred later in the left axon due to commissural transmission. F, the commissural potential in the left axon remained when transmission was blocked during refractoriness. A', the same stage is shown at a high sweep speed. B', a stronger depolarization of the left axon elicited its spike earlier. The spike of the right axon was now capable of eliciting a smaller transmitted spike in the left axon. The spikes in this and two subsequent figures have been retouched. 5 msec. calibration on left applies to records A–F.
potential of considerable amplitude was then disclosed. The time relations between this potential and the spike in the other axon are shown in more detail in A'. When the depolarizing stimulus was made still larger the commissural potential, summing with the depolarization, again evoked a spike (B'), but this response, arising during relative refractoriness and in a strongly depolarized axon, was of low amplitude.

Repetitive Activity Due to Circuits of Commissural Junctions

A single brief stimulus to the nerve cord can elicit a train of spikes in the lateral
axons (37, 57), but the medial giant axons do not respond repetitively. Occasionally, when small axons of the nerve cord were impaled in the course of the present work, brief stimuli evoked repetitive spikes in these fibers, and their activity might therefore give rise to the synaptic bombardment often seen in the lateral giant axons (57, 58).

However, as surmised in the earlier work, production of trains of repetitive activity at frequencies as high as 400/sec. after a single brief stimulus may involve the commissural interconnections of the two lateral axons. The data of Figs. 19 and 20 analyze this type of repetitive activity.

The right giant axon was impaled in the experiment of Fig. 19 (as in the

![Figure 20](image-url)

Figure 20. Repetitive activity due to reverberation between the two lateral giant axons. Three microelectrodes as in the diagram of Fig. 17, but with the two axons intact. Simultaneous recording from both axons of responses evoked by stimulation of the left axon by intracellular depolarizations of increasing strengths. The trace representing the activity of the right axon was lowered to simplify the registrations. a, b, the stimuli to the left axon produced only graded local responses without affecting the right axon. c, when a spike was evoked in the left axon a response was also obtained in the right. A small artifact due to capacitative cross-coupling was produced in each trace by the spike of the other axon. d, e, stronger depolarization produced one pair and three pairs of repetitions, respectively. Further description in text.

A weak stimulus to the rostral nerve cord excited only the other (left) axon and the responses recorded in the two impaled segments of the right axon were elicited via commissural transmission. The pre-septal spike (A, upper trace, recorded with microelectrode a) had a marked commissural component. The post-septal spike (lower trace, recorded with microelectrode b) arose with only brief septal delay and the notch on the rising phase is not prominent. The axon was then hyperpolarized with progressively increasing currents applied through microelectrode c.

The initial effect (B) was to delay the spike of the rostrad segment on the commissural potential and to increase its amplitude, as described in the preceding part. The septal potential recorded in the caudad segment also increased as described above, and gave rise to a large spike in the strongly hyperpolarized caudad segment. The delay in the post-septal spike permitted
appearance of a septal potential on the falling phase of the spike of the rostrad segment.

Further hyperpolarization of the caudad segment (C) led to a spike in the latter which arose well after the septal potential had begun to fall. Thus, the delayed caudad spike was not initiated by the septal potential; instead, it must have been initiated at a more caudad site, propagating rostrad into the recording region. Rostrad propagation continued across the septum, and the second spike of the rostrad segment arose high on the falling phase of the preceding spike, but about half of its potential was probably contributed by the septal component due to electrotonic spread of the preceding large caudad spike.

Still stronger hyperpolarization of the caudad segment did not cause further delay of the spike (D). A second response developed in this segment which was also followed by a spike in the rostrad segment. At a slower sweep speed, and recording only from the caudad segment (E) the response to the single brief shock to the nerve cord is seen to have been a train of spikes at 400/sec.

Although recording from the other axon was not available the sequence of events could be analyzed with a considerable degree of certainty and the conclusions could be confirmed in other experiments, such as that of Fig. 20, which will be described later. The weak stimulus to the rostral nerve cord caused transmission from the left axon to the right over the commissural pathway d. In the unpolarized axon conduction then proceeded caudad with transmission across the septum. On block of the transmission in the hyperpolarized axon transmission at a second commissural junction (r), probably that of the caudad segment, initiated a spike at the base of the caudad segment. This spike, now propagating rostrad and probably more slowly than normally, since the axon was hyperpolarized, arrived at the septum late enough to cause ephaptic reexcitation of the rostrad segment. The left axon was now reexcited, either by reversed transmission at d, or by transmission at a more rostral commissural junction. Caudad propagation in the left axon again engaged transmission at junction r and the cycle was again started.

This sequence is confirmed and further data are added by the experiment of Fig. 20. The experimental arrangement was as in the diagram of Fig. 17, except that as in the experiment of Fig. 18 both axons were intact. Also as in Fig. 18, the current electrode inserted in one axon (left, and registering on the upper beam) was used to depolarize the fiber. The intracellularly evoked response of this axon (Fig. 20c) evoked a spike in the other axon (right, and lower beam), after a delay of 1.7 msec. Transmissional delay at a commissural junction probably does not exceed 0.8 msec. (Figs. 17, 18). Thus, the intracellularly evoked spikes must have propagated along the right axon for some
0.4 to 0.5 msec. before crossing to the left axon and invading the recording site of the latter. Since the average conduction velocity is about 10 m/sec. the conduction path might have been 5 mm long, and thus about the length of one abdominal segment in the preparations employed.

When the current was increased a second spike was produced in the depolarized axon (d). At an interval of 1.7 msec. the other axon also developed a spike. The number of repetitions increased (e) when a still stronger depolarizing current was applied. The frequency of the discharge in both axons was about 400/sec., as it was also in the axon of Fig. 19. It was also a commonly observed rate of repetitive discharge in axons of earlier work (37, 57).

The patterns of the repetitive activity in the two axons of Fig. 20 indicate the mode of origin of the responses, as reverberations between the two axons. They also indicate the approximate sites at which the spikes in the two axons were initiated. The interval between the intracellularly evoked spike of the right axon and the response of the left was 1.7 msec., too long for transmission across the commissural junction of the segment. This commissural junction apparently had low transmissional potency and, as described above, transmission of the spike evoked in the right axon probably occurred at the commissure of the next segment. However, when the right axon was depolarized strongly its excitability must have been increased. The spike of the left axon could now initiate a second spike in the right fiber. The transmissional delay was about 0.9 msec. and the interval between the two spikes of the right axons accordingly was about 2.6 msec. The second spike in turn initiated a spike in the left axon, again over the more distant commissural junction. Increasing the excitability of the right axon by stronger depolarization (e) led to a second and third reverberation in the two axons, around the loop r that is shown in the diagram of Fig. 19. The timing of the spikes in the two axons of Fig. 20 has a remarkably steady pattern. This and the repetitive discharge at a rate observed very commonly in other experiments indicate that the loop is stable and that it is relatively simple, as might be expected from the components postulated in Fig. 19.

Thus it is likely that similar reverberations, due to cross-excitation in the commissural cross-couplings, though perhaps elicited against a background of synaptic bombardment, are also responsible for most of the repetitive activity observed in the lateral giant axons after a brief stimulus to the nerve cord. In these trains, the responses after the first usually originated at sites other than that which was stimulated (37).

DISCUSSION

NATURE OF SEPTAL TRANSMISSION The data presented above lead to the conclusion that transmission across the septa in the lateral giant axons of crayfish is ephaptic, by the local circuit current generated during the action
potential of the pre-septal segment. The septal membrane appears to be a passive resistive component permitting current flow equally in either direction. Transmission accordingly is unpolarized, although perhaps it is more readily achieved in one direction than in the other. Due to the resistance of the septal membranes a short, but finite delay occurs in the initiation of the post-septal spike, but the electrotonic septal potential from which the latter arises begins simultaneously with the pre-septal spike. The amplitude of the septal potential depends directly on the amplitude of the pre-septal spike, and is independent of the membrane potential of the post-septal segment, except in so far as the latter affects the amplitude of the pre-septal spike. The septal membranes may be represented quantitatively in a simple equivalent circuit in which the septum is a coupling resistance between the resistances of the pre- and post-septal segments.

The discrepancy between the effectiveness of septal transmission for pulses of applied currents and spikes in some experiments (Table IV) might have been caused by one of several factors: (a) The septal membranes might have rectifier properties for large depolarizing voltages, such as are produced at the peak of the spike. (b) The membranes might have a parallel capacity which would permit the pulse of the spike to develop a larger septal potential than would be expected from the steady-state measurement with applied currents. (c) The spike amplitude recorded by the microelectrode might be somewhat smaller, because of damage, than the spike at sites immediately adjacent to the septum.

Preliminary experiments with voltage clamp methods (cf. references 46, 51) do not support the first two alternatives. These results indicate that the $I-V$ relation (cf. Fig. 14) is linear over a range of more than 70 mv. When the potential on one side of the septum was changed by step functions, the potential on the other side changed monotonically, without an initial peak. Accordingly, we incline toward adoption of the third alternative explanation. An indication in favor of this possibility is seen in the experiment of Fig. 17. There was marked delay of the post-septal spike for caudorostral transmission, but the interval between the septal potential and the post-commissural spike was identical in both directions. Probably the damage caused in the rostrad segment by its division caused delay of septal transmission, as recorded at the microelectrode site, but transmission into the commissural branch must have been unaffected.

1 The anatomical asymmetry due to the presence of a commissural branch on the rostrad side of this septum might itself account for the lesser delay in rostrocaudal transmission. The branch always seems to develop a spike when the segment from which it arises has discharged, since a commissural potential is then always found in the other axon. Thus, in rostrocaudal conduction the current "sink" of the active pre-septal area is probably larger than the sink for current flow in the opposite direction which is associated with caudorostral transmission.
The various properties of septal transmission clearly define the difference between the ephaptic nature of the transmission and that of synaptic transmission. Electrical inexcitability of the synaptic membrane and minimal electrotonic spread from the activity of the presynaptic nerve terminals combine in the latter, so that chemical transmission by the release of a transmitter agent from the terminals appears to be obligatory (34, 36, 40, 41).

Varieties of Ephaptic Junctions Anatomical contacts that are physiologically defined as ephaptic junctions occur in a number of situations and may be classified on the basis of the tightness of coupling between the pre- and post-ephaptic units. Tight coupling is evidenced in those cases in which electrotonic spread from a pre-spike produces enough depolarization in the post-unit to elicit a spike. This is clearly the case in the septal junctions of crayfish and earthworm; in the lateral giant–motor giant junction of crayfish; and probably also at the junctions between the commissural branches of the lateral giant axons in crayfish. The intercalated discs of cardiac muscle (cf. reference 75) may also be classed among tightly coupled ephaptic connections.

Looser couplings, but occasionally strong enough to evoke spikes of the post-units, probably account for the “quasi-artificial synapses” of various polychaetes (16), and perhaps also are responsible for the dorsal root reflex which occurs in the spinal cord of mammals (78) and fish (9). Still looser couplings in which the pre-spike exerts only modulating effects on the post-units are demonstrable between neurons of lobster cardiac ganglion (46, 81, 82), between supra-medullary neurons of fish (6, 7), and between muscle fibers of decapod crustaceans (72).

There is probably a ladder-like network of interconnections between the giant axons of annelids (16, 74). If the transmissional potency of these junctions is low, as is sometimes the case in the commissural junctions of the crayfish lateral giant axons, transmission from one axon to the other in the annelids might be influenced by local conditions at one site or another. Thus, facilitatory effects might be contributed by synaptic bombardments at one segmental level or another and would give rise to shifting sites of transmission at the quasi-artificial synapses (16).

Anatomically distinct interconnections between spinal interneurons and dorsal root terminals have never been described and if ephaptic transmission is responsible for the dorsal root reflex it is probably effected (36) by “field” currents (31, 32), generated by contiguous synaptically activated neurons, and penetrating the terminals to excite the latter electrically. Excitatory and inhibitory field effects accounted for in tempo and sign by the flow of action currents are observed between contiguous axons (60, 63, 66, 70) and in the spinal cord (4, 42). An inhibitory phenomenon observed in Mauthner cells (28) is probably also ascribable to field effects. However, in special experi-
mental conditions transmission of spikes at "artificial junctions" may also occur (3, 49, 71).

While some commissural junctions of the crayfish giant axons may have greater transmissional potency in one direction than in the other, this difference is probably only quantitative (Fig. 18) and akin to the small difference in transmission in the two directions at the septal junctions. Facultative unidirectional ephaptic transmission is known only in the case of the lateral giant to motor giant junction of crayfish (29). The difference between this system and the bidirectional (or potentially bidirectional) ephaptic junctions is formally accounted for by the inclusion of a rectifier in the coupling element of the equivalent circuit of the former (29, 36). From a biophysical standpoint this formalism represents an interesting difference in membrane properties of the septal and the cord-motor giant fiber junctions.

Properties of Septal Membranes

The septal membranes of the crayfish lateral giant axon appear to be electrically inexcitable. They do not respond electrogenically when large differences of potential are imposed. Furthermore, the voltage-current relation is linear, at least over a range of ± 25 mV change, while the axonal membrane begins to show non-linearity at depolarizations of 5 mV. Electrical properties like those of the septal membranes are also found in the electrically inexcitable synaptically electrogenic, and in electrogenically inert membranes (10, 11, 13, 39–41). However, the available data do not provide a decision as to whether the septal membranes might respond electrogenically to chemical or other types of stimuli, as do postsynaptic and some receptor membranes (34, 36, 38) or whether they are electrogenically inert, as are the uninnervated membranes of electroplaques of eel (1, 61), some other Gymnotids (cf. reference 8), and *Torpedo nobiliana* (13).

Rectification at Ephaptic Junction of Cord-Motor Giant Fibers

While the apposed membranes of the lateral giant–motor giant junctions do not generate spikes it is nevertheless incorrect to regard them as electrically inexcitable, as had been done previously by one of us (36) and by Furshpan and Potter (29). Rectification, though it was first observed in spike-generating membrane (cf. references 20, 50), nevertheless can also be elicited in cells which do not produce spikes, such as the slow muscle fibers of frog (5, 17, 62), *Raia* electroplaques (8, 12, 19), and some muscle fibers of crayfish (26). The rectification is due to an electrically excited increase in membrane conductance, probably for K⁺ in frog slow muscle fibers (5), and for Cl⁻ in *Raia* electroplaques (19, 39). In the electroplaques the rectification is not associated with a marked electrogenesis except under special experimental conditions (8, 19). The rectification occurs with some time delay in these tissues, whereas it appears to develop rapidly in the junction (29). However, this difference
may be accounted for perhaps by the known diversity in kinetics of electrically excitable processes (39).

At any rate, in a strict sense one or both of the junctional membranes in the lateral-motor giant system must be regarded as electrically excitable. The fundamental nature of the rectifying property may lie either in rectification by the pre-junctional membrane or in anomalous rectification (39) of the post-junctional membrane. It is also possible that both effects might cooperate to account for the very high degree of rectification at the junction.

Varieties of Ephaptic Membranes Thus, ephaptic junctions may have electrically excitable (but not spike-generating) membrane, or the latter may be electrically inexcitable. The second variety may include membranes which are electrogenically inert, or some that respond to specific stimuli, as do synaptic and sensory membranes. Since present day morphological techniques cannot distinguish these different varieties (35, 67) the characterization of the system in each specific case must be made by functional tests.

It has been suggested (cf. reference 25) that ephaptic systems differ from synaptic in the tighter coupling between the pre- and post-junctional membranes of ephapses. Looseness of resistive coupling, by shunting in the synaptic space, would account for the remarkably small electrotonic pickup in a postsynaptic cell of the activity of the presynaptic terminals (23, 36, 41). The view that some ephaptic junctions have closely abutting membrane with little or no intervening extracellular space and therefore have tight coupling is attractive. However, the degree of coupling can only be a secondary differentiation because (a) the postsynaptic membrane does not respond electrogenically to large changes of membrane potential which are derived from extrinsic or intrinsic currents (10, 11, 13, 41, 84) and (b) there are various degrees of coupling in ephaptic systems.

Furthermore, it is not yet clear to what extent the ephaptic junction of crayfish lateral to motor giant axons differs structurally from that of the synapse between squid giant axons (65, 73). Recent work on the septa of crayfish axons (48) indicates that except for small areas of apposition of the two axonal membranes, there may actually be more of a connective tissue barrier at the septa than there is, for example, between presynaptic nerve terminals and electroplaques (67, 80). The rectifying ephaptic junctions between lateral and motor giant axons "may fuse into a single electron-dense zone about 50 A° thick" (65), while the apposed membranes at the septa are spaced about 100 A° apart (48). In the medial to motor giant junctions (73 a) occasionally "the overall thickness of the synaptic membrane complex is reduced to well below 150 A°".

In view of the uncertainty which still exists even on the basis of electron microscopic data, the earlier division of opinion based on simpler histological
preparations, that the septate axon systems represent synaptic junctions (53, 76) or that they differ profoundly from such junctions (55) cannot carry much weight. The physiological evidence, however, is decisive. Septal transmission operates through an ephaptic mechanism, not through that which obtains at synaptic junctions.

Commissural Transmission In view of the fact that the commissural junctions can be bidirectional and that they pass an electrotonic current, it is likely that they, too, are ephaptic. However, for reasons already given, information as precise as that on the septal junctions could not be obtained for the commissural connections. Thus, although the commissural potential did not increase with hyperpolarization (Figs. 17, 19) as a depolarizing p.s.p. may be expected to do (36), this evidence is not decisive. The commissural potential recorded in the axon is small relative to what must be its true size, since it is capable of initiating a spike somewhere along the commissural branch. Furthermore, transmission is delayed by more than 0.5 msec. and spread of current from one axon to the other is very much attenuated. Thus, hyperpolarizing currents delivered to the axon must have been applied at a long distance from the junction as measured in electrophysiological terms. Therefore, synaptic transmission, though unlikely, cannot be ruled out with the available data.

Since the safety factor for septal transmission is relatively low, the ladder of commissural connections provides a considerable degree of insurance that messages carried by the lateral giant axons will be propagated. However, whether the connections cause repetitive, reverberatory activity in the intact animal is doubtful. Instances of the repetitive responses to a single brief cord stimulus were less frequent in the present work than in earlier experiments (57, 58), but reverberatory effects could be elicited by experimental interference with normal propagation by depolarization (Fig. 20) or hyperpolarization (Fig. 19) or by damaging one of the axons. Furthermore, it seems likely that trains of discharges in the cord at frequencies in the neighborhood of 400/sec. would have strong effects on the animal if they occurred normally in response to afferent impulses, but such consequences have not been reported to our knowledge.

This work was supported in part by grants from the Muscular Dystrophy Associations of America, National Institute of Neurological Diseases and Blindness (B 389-C4 and C5), National Science Foundation (NSF G-5665), and the United Cerebral Palsy Research and Educational Foundation. Part of the costs of laboratory space at the Marine Biological Laboratory was defrayed by a grant from the Marine Biological Laboratory under its O.N.R. contract.

Dr. Watanabe held a Visiting Fellowship in the Department of Neurology under a grant from the United Cerebral Palsy Research and Educational Foundation.

A preliminary account was published in 1960 (83).

Received for publication, May 16, 1961.
REFERENCES

40. GRUNDFEST, H., General physiology and pharmacology of junctional transmission, in Biophysics of Physiological and Pharmacological Actions, (A. M. Shanes, editor), Washington, D. C., American Association for the Advancement of Science, in press.

44. HAGIWARA, S., Synaptic potential in the motor giant axon of the crayfish, J. Gen. Physiol., 1959, 41, 1119.

47. HAMA, K., Some observations on the fine structure of the giant nerve fibers of the earthworm, Eisenia fetida, J. Biophysic. and Biochem. Cytol., 1959, 6, 61.

48. HAMA, K., Some observations on the fine structure of the giant fibers of the crayfishes (Cambarus virilis and C. clarkii) with special reference to the submicroscopic organization of the synapses, Anat. Rec., in press.

