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ABSTRACT In lower vertebrates, cone retinomotor movements occur in
response to changes in lighting conditions and to an endogenous circadian
clock. In the light, cone myoids contract, while in the dark, they elongate. In
order to test the hypothesis that melatonin and dopamine may be involved in
the regulation of cone movement, we have used an in vitro eyecup preparation
from Xenopus laevis that sustains light- and dark-adaptive cone retinomotor
movement. Melatonin mimics darkness by causing cone elongation. Dark- and
melatonin-induced cone elongation are blocked by dopamine. Dopamine also
stimulates cone contraction in dark-adapted eyecups. The effect of dopamine
appears to be mediated specifically by a dopamine receptor, possibly of the Dy
type. The dopamine agonist apomorphine and the putative D, agonist
LY171555 induced cone contraction. In contrast, the putative D, agonist
SKF38393-A and specific a;-, as-, and B-adrenergic receptor agonists were
without effect. Furthermore, the dopamine antagonist spiroperidol not only
blocked light-induced cone contraction, but also stimulated cone elongation in
the light. These results suggest that dopamine is part of the light signal for
cone contraction, and that its suppression is part of the dark signal for cone
elongation. Melatonin may affect cone movement indirectly through its influ-
ence on the dopaminergic system.

INTRODUCTION

It is now apparent that several aspects of photoreceptor metabolism are regulated
in relation to the daily light-dark cycle (Besharse, 1982). Prominent among these
are photoreceptor membrane turnover (LaVail, 1976) and photoreceptor move-
ment (Welsh and Osborne, 1937; Levinson and Burnside, 1981). Retinomotor
movements occur in some lower vertebrates, presumably to position photorecep-
tor outer segments for optimal exposure to incoming light (see Burnside and
Nagle, 1983). In the light, cone myoids contract, rod myoids elongate, and, in
some species, the pigment granules in the retinal pigment epithelium (RPE)
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move vitreally. In the dark, the movements are reversed: cones elongate, rods
contract, and pigment granules move sclerally.

An analysis of reactivated movements in detergent-lysed photoreceptor cells
has increased our understanding of the mechanisms of elongation and contrac-
tion. Elongation appears to be a microtubule-based process in cones (Warren
and Burnside, 1978; reviewed by Burnside and Nagle, 1983), whereas contrac-
tion is actin-based (Burnside, 1976, 1978; reviewed by Burnside and Nagle,
1983). Furthermore, cAMP and Ca** are probably directly involved in regulating
the motile machinery. In particular, cAMP blocks reactivated cone contraction
and is required for reactivated elongation (Burnside et al., 19824; Porrello and
Burnside, 1984). This is consistent with earlier data showing that increases in
cAMP in intact cells also cause dark-adaptive retinomotor movements (Burnside
et al., 19824; Besharse et al., 1982; Burnside and Basinger, 1983). These
observations have led to the general view that nighttime increases in cAMP in
the photoreceptor-pigment epithelial complex lead to the dark-adaptive move-
ments (Burnside and Nagle, 1983).

Although numerous investigators have described the effects of light and
darkness on retinomotor movements and other aspects of rhythmic photorecep-
tor metabolism (reviewed by Besharse, 1982; Burnside and Nagle, 1983), little
is known about the mechanism of their effects. To further complicate the issue,
rhythmic photoreceptor metabolism is influenced by an endogenous circadian
clock (LaVail, 1976; Besharse et al., 1977; Welsh and Osborne, 1937; Levinson
and Burnside, 1981). The latter observation has led to the suggestion that
melatonin may be involved in the circadian regulation of photoreceptor metab-
olism (Besharse, 1982). This view is consistent with reports that melatonin
activates photoreceptor disk shedding (Besharse and Dunis, 19835) and promotes
dark-adaptive pigment aggregation in the RPE (Kraus-Ruppert and Lembeck,
1965; Chéze and Ali, 1976; Pang and Yew, 1979). Furthermore, an indoleamine-
synthesizing pathway has been identified in the retina (Baker et al., 1965; Gern
and Ralph, 1979), where the activity of a key enzyme in the synthesis of
melatonin, serotonin N-acetyltransferase (NAT), exhibits a circadian rhythm
with peak activity at night (Hamm and Menaker, 1980; Binkley et al., 1980;
Iuvone and Besharse, 1983).

Recent evidence suggests that melatonin modulates the release of dopamine
(Dubocovich, 1983), a major catecholamine in retina (reviewed in luvone,
1985a), and that dopamine regulates melatonin biosynthesis (Besharse et al.,
1984; Iuvone and Besharse, 19854, b). The activity of tyrosine hydroxylase, the
rate-limiting enzyme for dopamine synthesis, occurs rhythmically in retina, but
the peak activity of tyrosine hydroxylase and dopamine levels occurs in the
daytime (Iuvone et al., 1978; Reme et al., 1983; Wirz-Justice et al., 1984).
Dubocovich (1983) has demonstrated that melatonin inhibits the Ca®**-dependent
release of [*"H]|dopamine in rabbit retinal slices. In contrast, dopamine receptor
agonists inhibit the nighttime rise in NAT activity (Besharse et al., 1984; Iuvone,
1985a). These data have led to the suggestion that melatonin and dopamine are
components of a retinal regulatory pathway for the control of rhythmic photo-
receptor metabolism (luvone and Besharse, 19854, b).
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In order to investigate the mechanisms involved in the temporal regulation of
cone movement, we have used an in vitro preparation, eyecups from Xenopus
laevis, that sustains the processes of photoperiod-related disk shedding (Besharse
et al., 1980), cone retinomotor movement (Besharse et al., 1982), and melatonin
biosynthesis (Besharse and Iuvone, 1983). In the present study, we have taken
advantage of the fact that cone movements occur in vitro to investigate the
possible role of melatonin and dopamine in the control of those movements. The
principal finding is that melatonin mimics darkness by causing cone elongation,
while dopamine mimics light by causing cone contraction. These observations
suggest that a retinal dopaminergic system is important for the control of cone
position, and that melatonin may influence cone position indirectly through its
effects on dopaminergic neurons.

MATERIALS AND METHODS

Experiments were performed using eyecups prepared from postmetamorphic Xenopus
laevis that were 3.5-5.0 cm in length (Nasco Biologicals, Inc., Fort Atkinson, WI). Animals
were maintained at 24-26°C on a cyclic light schedule (12 h light:12 h dark) for at least
1 mo before use. For constant-light experiments, eyecups were prepared in room light
from animals that had been maintained for 4 d in constant light (3 X 107 W/cm?, 25°C).
In cyclic-light experiments, eyecups were also prepared in room light just before light
offset. Eyecups were obtained by surgical removal of the cornea, iris, and lens (Besharse
et al., 1980). For all experiments, a defined culture medium containing 35 mM NaHCO,
(Besharse and Dunis, 1983a) was supplemented with 100 uM ascorbic acid (Fisher
Scientific Co., NJ). This ascorbate medium, gassed with 5% CO:/95% O: (pH 7.4), was
used during dissection and incubation. All drugs were added to this medium just before
use. Melatonin, dopamine, and isoproterenol were obtained from Sigma Chemical Co.,
St. Louis, MO; apomorphine from Merck, Sharp & Dohme, Rahway, NJ; clonidine from
Boehringer-Ingelheim, Ridgefield, CT; spiroperidol from Janssen, Piscataway, NJ; trans-
(—)-4aR-4, 4a,5,7,8,8a,9-octahydro-5 propyl-1H (or 2H) 4-pyrazolo {3,4-g]-quinoline mo-
nohydrochloride (LY171555) from Lilly Research Laboratories, Indianapolis, IN; and
2,3,4,5-tetrahydro-1-phenyl-1H-3-benzazepine-7,8-diol, hydrochloride (SKF38393-A)
from Smith, Kline and French Laboratories, Philadelphia, PA. During incubation, eyecups
were maintained in plastic culture dishes containing 4 ml of medium. The dishes were
placed in a gassed (5% CO2/95% O2) incubation chamber on a rotary shaker (60 rpm) for
3-6 h in the light (1.85 X 107 W/cm? incident at level of culture dishes) or in the dark.
After incubation, eyecups were fixed in 1% OsOy, 1.65% glutaraldehyde, and 0.075 M
cacodylate buffer on ice for 1.5 h. They were then dehydrated in ethanol and embedded
in Polybed 812-araldite (Polysciences, Inc., Warrington, PA). Eyecups were oriented in
the blocks along their dorso-ventral axis, and sections were taken at the level of the optic
nerve. Data were obtained from the light-microscopic viewing of 1-um-thick sections
stained with Azure II (Sigma Chemical Co.). As previously described (Besharse et al.,
1982), the cone length was operationally defined as the distance from the external limiting
membrane to the proximal side of the oil droplet, as measured in a plane parallel to the
long axis of the adjacent rod outer segments (see Fig. 1). Because the cone length is
generally 5-10 um shorter in the dorsal retina for both elongated and contracted states,
measurements were made only in the ventral field. 20 cones were measured beginning
100 um from the optic nerve in each eyecup, and an average value was obtained for each
eyecup. Statistical evaluation involved an analysis of variance followed by the Student
Neumann-Kuels test (Schefler, 1979). In this paper, data are expressed as the percent
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FiGURE 1. Light micrographs of light- and melatonin-treated retinas from 4-d
constant-light-treated X. lgevis. (A) Azure Il-stained section (1 um) of a retina
maintained in vitro for 3 h in the light. The small arrows indicate the proximal
edge of the oil droplet. Note the close proximity of the cone oil droplet to the
external limiting membrane, indicated by the large arrow. (B) A similar section
from an eyecup maintained in the light in the presence of 0.5 uM melatonin. Note
that the oil droplet is displaced sclerally. The calibration bar equals 20 um.
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change in cone length compared with the light control [(X experimental — X light control/
X light control) X 100]. A 100% change generally involved a total movement of 25-35
uM.

RESULTS
Effects of Melatonin

As previously reported (Besharse et al., 1982; Besharse, 1982), dark incubation
of eyecups obtained from 4-d constant-light-treated animals results in cone
elongation. The dark-induced increase approaches a maximum by 2 h (Besharse,
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FIGURE 2. Melatonin stimulates cone elongation in eyecups prepared in the light
from 4-d constant-light—~treated animals. All groups were treated for 3 h in the light
(L) (open bars) or in darkness (D) (shaded bar). As for all experiments, the drug
concentration indicated is that of the culture medium. The histogram bar height
indicates the mean (n = 4-5 per group) percent change in cone length as compared
with light control. The percent standard error is indicated by the line above each
bar. Asterisks signify a statistically significant difference compared with the light
control: P < 0.01.

1982) and typically exceeds a 100% increase over the cone length observed in
the light (see Fig. 2).

Melatonin stimulates cone elongation in eyecups from constant-light-treated
animals to an extent comparable to dark treatment (Figs. 1 and 2). When eyecups
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prepared in the light were maintained in the light, the cones remained contracted.
However, when they were incubated in the dark or in the light in the presence
of melatonin, the cone length increased by >100%. Melatonin was highly potent,
yielding the same effect over a concentration range of 500 pM to 5 uM. Although
melatonin was reproducibly effective in eyecups from constant-light—treated
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FIGURE 3. Dopamine (DA) blocks melatonin-induced cone elongation. Eyecups
from constant-light—treated animals were cultured in darkness (D) (shaded bar), in
the light (L) (open bar) without drugs, or in the light in the presence of melatonin
(0.5 uM), dopamine (50 uM), or both drugs for 3 h. Data are expressed as in Fig. 2.
n = 8-9 per group. *P < 0.01 compared with light control.

animals, a significant effect of melatonin was not detected in eyecups prepared
at the time of normal light offset from animals that had been maintained on a
12 h light:12 h dark lighting schedule (data not shown). In some individual cases,
cones appeared to elongate, but never to an extent comparable to that occurring
at night. The lack of a reproducible effect of melatonin under this condition was

confirmed in several experiments using concentrations of melatonin from 50 nM
to 200 uM.
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Effects of Dopamine

Since it has been demonstrated that melatonin inhibits the Ca**-dependent
release of [*H]dopamine in rabbit retinal slices (Dubocovich, 1983), we asked
what effect dopamine would have on melatonin-induced cone movement. Do-
pamine (50 gM) inhibited melatonin-induced cone elongation (Fig. 3). Both dark
treatment and 0.5 uM melatonin caused cones to double in length compared
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FIGURE 4. Dopamine blocks dark-induced cone elongation. Eyecups from con-
stant-light—treated animals were prepared in the light and dopamine (50 uM) was
added to the culture medium at the beginning of the 3-h dark incubation. Data are
expressed as in Fig. 2. n = 4 per group. *P < 0.01 compared with light control.

with the light control. However, when both melatonin and dopamine were added
to the culture medium in the light, dark-adaptive movements no longer occurred.
The addition of dopamine alone in the light did not alter the cone length
significantly; the mean lengths declined slightly (Fig. 3).

The above results suggest that dopamine might be important in the control of
cone contraction. To test this hypothesis, we investigated the ability of dopamine
to block dark-induced cone elongation and to induce cone contraction in con-
stant-light-treated animals. Burnside and colleagues (reviewed by Burnside and
Nagle, 1983) have shown that the actual motile mechanisms for these processes

¥20¢ Indy $Z uo 3senb Aq ypd-| 19/990¢ | 81/1 L9/5/98/4pd-8joe/db(/Bi0 sseidnyy/:dpy wouy pepeojumoq



678 THE JOURNAL OF GENERAL PHYSIOLOGY - VOLUME 86 - 1985

differ. For both processes, the addition of dopamine to the culture medium
mimicked the effects of light. When eyecups prepared in the light were cultured
in the dark with 50 uM dopamine, dark-induced cone elongation was blocked
(Fig. 4). When cones were allowed to elongate by incubation of eyecups in normal
medium for 2 h in the dark followed by addition of dopamine, cones contracted
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FIGURE 5. Dopamine stimulates cone contraction in the dark in eyecups prepared
from constant-light-treated animals. Eyecups were preincubated in the dark for 2
h to elongate cones. Dopamine was added during the subsequent 3-h incubation.
Dopamine and light caused cone contraction, but cones remained elongated in
eyecups kept in the dark. Data are expressed as in Fig. 2. n = 4 per group. *P <
0.01 compared with light control.

to their light-adapted positions (Fig. 5). Significant contraction occurred with 50
and 5 uM dopamine; 0.5-0.05 uM dopamine was not effective.

Dopamine also effects cone contraction in cyclic-light—treated animals (Fig. 6).
This experiment was performed exactly as that for the constant-light—treated
eyecups, except that eyecups were prepared at the time of normal light offset
and were preincubated for 3 h rather than for 2 h. A 2-h preincubation in
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FIGURE 6. Dopamine induces cone contraction in eyecups prepared in the light
from animals maintained on a 12 h light:12 h dark lighting schedule. A 3-h dark
incubation was necessary to reproducibly elongate cones (bar on right). Dopamine
(50 uM) was added during the subsequent 3-h incubation. Data are expressed as in
Fig. 2. n = 4 per group. *P < 0.01 compared with light control.

TABLE I

Effects of Catecholamine Agonists on Cone Contraction
in Eyecups from 4-d Constant-Light—treated Animals

Percent change in

Condition n cone length

2 h dark preincubation b 91+10*
2 h dark:3 h light 5 0+14

2 h dark:3 h dark 4 99+13*
2 h dark:3 h dark + apomorphine* 5 ~9+11

2 h dark:3 h dark + isoproterenol* 5 86+9+*

2 h dark:3 h dark + clonidine* 5 88+6*

2 h dark:3 h dark + phenylephrine* 5 90+7*

2 h dark:3 h dark + LY171555% 4 —14+3

2 h dark:3 h dark + SKF38393% 4 80+10*

Values are expressed as percent change in cone length compared with light control
+ percent SEM based on the number of eyecups (n) indicated.

* P<0.01 compared with light control.

Al drugs were added at a concentration of 1 um.
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darkness did not completely elongate cones in cyclic-light animals. Both light
and dopamine (50 uM) caused complete cone contraction in these eyecups.

Dopamine Agonists and Antagonists

An analysis of the effects of catecholamine agonists on cone length suggests that
the effect reported here is specifically mediated by a dopamine receptor. When
eyecups were preincubated in the dark, the cones elongated (Table I). If, during
the subsequent incubation, eyecups were exposed to light or to darkness plus 1
#M apomorphine (a dopamine receptor agonist), cones contracted. The same
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FIGURE 7. Spiroperidol, a dopamine antagonist, blocks light-induced cone con-
traction. After a 2-h dark preincubation to elongate cones, spiroperidol (10 xM)
was added just before transferring eyecups to the light. See Fig. 2 for details. n = 4
per group. *P < 0.01 compared with light control.

concentrations of isoproterenol (8-adrenergic agonist), phenylephrine («;-adre-
nergic agonist), or clonidine (az-adrenergic agonist) did not cause cone contrac-
tion.

We attempted to further characterize the dopamine receptor using a specific
D, receptor agonist, LY171555, the active isomer of the racemic mixture
LY141865 (Bach et al., 1980; Stoof and Kebabian, 1981; Tsuruta et al., 1981),
and a specific D, receptor agonist, SKF38393-A (Setler et al., 1978; Roberts and
Messent, 1980; Sibley et al., 1982). The D, receptor subtype is thought to
stimulate adenylate cyclase and hence increase levels of cCAMP, while the D,
receptor is believed to block or to reduce the cyclase activity and thus decrease
cAMP levels (Kebabian and Calne, 1979). Light and 1 uM LY171555 induced
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cone contraction (Table I), but the same concentration of the D, agonist had no
effect.

The dopamine receptor antagonist spiroperidol, which is relatively specific for
D, receptors (Creese et al., 1983), blocked light-induced cone contraction (Fig.
7). In this experiment, the eyecups were preincubated for 2 h in the dark. 15
min before transferring the eyecups to the light, 10 uM spiroperidol was added
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FIGURE 8. Addition of spiroperidol (10 xM) to eyecups from 4-d constant-light—
treated animals causes cone elongation. The antagonist was added at the beginning
of a 3-h light incubation. Data are expressed as in Fig. 2. n = 4 per group. *P <
0.01 compared with light control.

to the culture medium. When the cones were brought back into the light, they
no longer contracted, but rather maintained their elongated state. Furthermore,
the addition of 10 uM spiroperidol in the light induced cone elongation to an
extent comparable to the dark control (Fig. 8). Blocking the dopamine receptors
maintained or induced the dark-adaptive state, which further supports the
hypothesis that dopamine is at least part of the light signal for cone contraction.
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DISCUSSION
Melatonin and Dopamine in the Retina

There is substantial evidence that the retina contains the neuromodulator mela-
tonin, and that this or a related indoleamine may play an important role in the
control of rhythmic photoreceptor metabolism. The enzyme system for mela-
tonin synthesis has been identified in the retina of several species (Baker et al.,
1965; Cardinali and Rosner, 1971; Gern and Ralph, 1979; Binkley et al., 1980).
At present, the melatonin-synthesizing cell has not been unequivocally identified,
although the photoreceptor is a candidate (Bubenik et al., 1974; Vivien-Roels et
al., 1981; Wiechmann et al., 1985). As in the pineal gland (reviewed by Reiter,
1981), melatonin appears to be synthesized and released in a circadian fashion
in the retina. Hamm and Menaker (1980) have detected melatonin-like immu-
noreactivity in the chicken retina, and have demonstrated that peak levels occur
at night. Many recent studies demonstrate that the enzyme NAT, which is
believed to be responsible for the rhythmic production of melatonin in the pineal
(Klein and Weller, 1970), also expresses a circadian rhythm in retinal tissue
(Binkley et al., 1980; Hamm and Menaker, 1980; Iuvone and Besharse, 1983;
Besharse and Iuvone, 1983; Besharse et al., 1984). The proposed functions for
locally synthesized melatonin include the regulation of retinomotor movements
(Kraus-Ruppert and Lembeck, 1965; Chéze and Ali, 1976; Pang and Yew, 1979),
circadian photoreceptor membrane turnover (Besharse and Dunis, 19835; Be-
sharse et al., 1984), and retinal dopamine release (Dubocovich, 1983).

The retina also contains enzyme systems for the synthesis of dopamine (re-
viewed by Iuvone, 1985a). Dopamine appears to be localized to a subclass of
amacrine cells in most species examined (reviewed by Iuvone, 1985a), and it may
also be the neurotransmitter of some interplexiform cells in teleosts and in New
World monkeys (Laties and Jacobowitz, 1966; Dowling and Ehinger, 1975). The
effects of dopamine mediated by D; receptors that increase adenylate cyclase
activity in fish horizontal cells have been well characterized (reviewed by Iuvone,
1985a). In X. laevis, a subpopulation of dopaminergic amacrine cells has been
identified, but there is no evidence for a dopamine-containing interplexiform
cell (Sarthy et al., 1981). Evidence indicates that retinal dopamine not only
functions as a neurotransmitter (reviewed by Iuvone, 1985a), but it also appears
to have a neuromodulatory role and may influence the response of cells to other
neurotransmitters (Yeh et al.,, 1984). Whether dopamine’s effect on cone con-
traction is indirect via another cell synapse, or whether dopamine actually diffuses
through the retina to affect the cone directly awaits further experimentation. In
either case, the effects of dopamine on photoreceptors imply the existence of a
retinal feedback pathway.

Melatonin and Dopamine Effects on Cone Movement

We have previously demonstrated that both light-induced cone contraction and
dark-induced cone elongation are sustained in eyecups from 4-d constant-light—
treated X. laevis (Besharse et al., 1982). Constant-light treatment blocks rod
photoreceptor disk shedding (Besharse et al., 1977), retinomotor movements
(Besharse et al., 1982), and NAT rhythmicity (Iuvone and Besharse, 1983). The
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subsequent exposure of either intact animals or eyecups to darkness results in an
increase in each activity. In the present study, we have found that melatonin
mimics the effects of darkness (cone elongation), while dopamine mimics the
effects of light (cone contraction). We have also found that dopamine’s effect
can be demonstrated in eyecups from animals maintained in cyclic light. In
contrast, the addition of melatonin is not sufficient to cause cone elongation at
subjective dusk in eyecups from cyclic-light—treated animals. It was previously
reported in a frequently quoted abstract that melatonin induced cone contraction
in X. laevis (Quay and McLeod, 1968). In our experiments, however, melatonin
induced movements characteristic of darkness.

Dark-adaptive cone movements can also be stimulated by conditions expected
to increase intracellular cAMP (Besharse et al., 1982; Burnside et al., 19825). It
has been suggested that the nighttime rise in cAMP may act as a general signal
for darkness (Burnside et al., 1982b), which is interpreted differently by the
different cells exhibiting retinomotor movement. For example, by stimulating a
force-producing microtubule-dependent process, cAMP induces cone elongation
(Warren and Burnside, 1978; Dedman et al., 1979). However, in intact cells, the
effects of CAMP are probably more complicated (Besharse, 1982). Retinal NAT
activity, which is thought to be responsible for generating a rhythm of melatonin
biosynthesis, peaks during the dark phase of the light-dark cycle. The effects of
darkness on NAT activity are mimicked by cAMP analogues (Iuvone and
Besharse, 1983, 1985a, b). Hence, increasing levels of cAMP probably elevate
levels of melatonin, which we have shown to induce cone elongation. Further-
more, RPE pigment migration is similarly affected by both cAMP and melatonin.
In the dark, melanin granules migrate to the base of the RPE cell (Ali, 1975;
Burnside and Laties, 1979). This effect can be mimicked by melatonin (Kraus-
Ruppert and Lembeck, 1965; Chéze and Ali, 1976; Pang and Yew, 1979) and
by cAMP (Burnside et al., 19825; Burnside and Basinger, 1983). The addition
of exogenous cAMP to the retina probably affects both the motile machinery as
well as the melatonin synthetic pathway.

The mechanism by which melatonin affects cone position is unclear. Some
reports suggest that at high (millimolar) concentrations, melatonin may affect
microtubule-mediated events directly (reviewed by Cardinali, 1980). Since cone
elongation is a microtubule-dependent process (Warren and Burnside, 1978), it
is possible that melatonin stimulates cone elongation by directly affecting the
motile mechanism. Although we cannot rule out a direct effect on the motile
mechanism, the low concentration of melatonin used in these experiments makes
this unlikely. Melatonin could also interact with an adenylate cyclase-linked
receptor and stimulate a rise in cAMP that could activate motile events in the
photoreceptors or RPE. Although no evidence supports such a model, it is a
testable hypothesis that cannot be ruled out at present.

Another possibility consistent with the results of our experiments is that
melatonin may influence cone movement by modulating dopamine release in the
retina. Dubocovich (1983) has recently demonstrated that picomolar concentra-
tions of melatonin inhibit the Ca**-dependent release of [*H]dopamine in rabbit
retinal slices. Similarly, in the hypothalamus, melatonin inhibits the uptake and
release of catecholamines (Cardinali et al., 1975; Zisapel and Laudon, 1982). We
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have shown that melatonin-induced cone elongation is inhibited by dopamine,
which suggests that melatonin may regulate cone movement by modulating
dopamine release. This hypothesis is further supported by the observation that
in X. laevis eyecups, melatonin decreased the concentration of the dopamine
metabolite 3,4-dihydroxyphenylacetic acid in light-exposed retinas, which sug-
gests that, in this system, melatonin also inhibits dopamine release (Pierce et al.,
1984).

Dopamine also influences melatonin biosynthesis in X. laevis eyecups. As with
cone elongation in the eyecup preparation, catecholamines mimic the effects of
light and block the nighttime rise in NAT activity through a process mediated
by a specific dopamine receptor (Iuvone and Besharse, 1983, 19854, b; Besharse
et al., 1984; Iuvone, 1985a). Iuvone (19855) has suggested that this effect may
be mediated by a D receptor that is believed to inhibit adenylate cyclase activity
(Kebabian and Calne, 1979). He has demonstrated that the D; agonist LY171555
not only inhibits the dark-induced rise in NAT activity, but also decreases cAMP
accumulation in dark-adapted retinas (Iuvone, 19855). Thus, in the light, tyro-
sine hydroxylase activity peaks (Iuvone et al., 1978), while NAT activity is low
(Iuvone and Besharse, 1983). In darkness, the enzyme activity levels are reversed:
NAT activity peaks and tyrosine hydroxylase activity is suppressed. The recip-
rocal nature of the melatonin and dopamine synthetic pathways suggests that an
effective feedback mechanism exists for these systems in the retina. Whether the
feedback is direct or is modulated trans-synaptically is not currently known.

It seems unlikely that this melatonin/dopamine relationship is solely responsible
for the dark-adaptive position of cones, because in eyecups from cyclic-light
animals, melatonin did not induce elongation in the light. Although melatonin
may be a part of the dark signal for elongation, other factors may also be needed.
For example, some as yet unidentified positive effector or an additional mecha-
nism for the suppression of dopamine may be required. There is considerable
evidence that the neurotransmitter y-aminobutyric acid (GABA) has an inhibi-
tory influence on dopamine-containing amacrine cells in rat retina (reviewed by
Iuvone, 1985a). We have evidence that a GABA agonist, muscimol, stimulates
cone elongation in our constant-light preparation and that, in concert with
melatonin, it causes elongation in the cyclic-light preparation (Pierce, M. E., and
J. C. Besharse, manuscript in preparation). This suggests that in the cyclic-light
preparation, melatonin, dopamine, and GABA interact to determine cone posi-
tion.

The difference in melatonin sensitivity between cyclic-light— and constant-
light—treated eyecups may be related to decreased melatonin biosynthesis and to
down-regulation of dopamine sensitivity, which is expected in constant light. It
has been reported that constant-light treatment not only decreases the level of
immunoreactive melatonin, but also decreases the dopamine receptor number
in rabbit retina (Lucas et al., 1984; Dubocovich et al., 1985) and in chick retina
(de Mello et al., 1982). If our constant-light system is already down-regulated
with respect to dopamine sensitivity, any treatment that further lowers dopamine
levels may be sufficient to induce elongation.

Our evidence suggests that dopamine is an important part of the light signal
for cone contraction. Retinal dopamine biosynthesis occurs in a rhythmic fashion
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with peak activity in the light (Iuvone et al., 1978). We have demonstrated that
exogenous dopamine mimics the effects of light. It not only blocks dark- and
melatonin-induced cone elongation, but it also stimulates cone contraction in
dark-adapted eyecups. Its effects are the same in eyecups from both cyclic- and
constant-light-treated animals. The dopamine agonist apomorphine stimulates
cone contraction, while the §-, a;-, and as-adrenergic agonists do not, which
implies that the catecholamine effect is probably mediated by a specific dopamine
receptor. Furthermore, the effects of both dopamine and light are blocked by
the dopamine antagonist spiroperidol, which implies that it is endogenous do-
pamine that affects cone contraction. Dearry and Burnside (1985) have also
shown in the sunfish that dopamine induces cone contraction that is blocked by
dopamine antagonists. Simply blocking the dopamine receptors in our system
with spiroperidol stimulated cone elongation, which supports the hypothesis that
dopamine suppression is part of the dark signal.

Our data also support a role for a D; receptor in the retina and suggest that
dopamine’s effect on cone contraction is mediated by such a receptor. The D,
receptor agonist SKF38393-A did not cause light-adaptive responses, but the D,
receptor agonist LY171555 did. The relative potency of dopamine can be used
as a criterion for the categorization of dopamine receptors (Kebabian and Calne,
1979). Nanomolar concentrations stimulate Dy receptors (Kebabian and Calne,
1979). Our dose-response data indicate that cone contraction is affected by
micromolar concentrations of dopamine. However, since the concentration of
dopamine reported is for the bathing medium, the actual effective concentration
may be significantly lower since dopamine must diffuse through the retina, and
a high-affinity uptake system exists in X. laevis retina for this compound (Sarthy
et al., 1981). Interestingly, a low level of cCAMP is one of the factors necessary
for reactivated cone contraction (Porrello and Burnside, 1984), but cAMP is
required for reactivated cone elongation (Burnside et al.,, 1982a). Recently,
Dearry and Burnside (1985) have demonstrated that the adenylate cyclase
activator forskolin and the phosphodiesterase inhibitor 3-isobutyl-1-methylxan-
thine each induces dark-adaptive retinomotor movements that are blocked by
dopamine, which further supports a role for a D receptor in the modulation of
cone position through effects on cAMP.

In summary, our data suggest that dopamine is an important effector of cone
movement and that retinal melatonin may affect cone movement via modulation
of dopamine release. Dopamine appears to be an integral part of the light signal,
and its suppression may be a necessary part of the dark signal for cone elongation.
These results emphasize the importance of investigating the role of post-recep-
toral retinal neurons in the regulation of circadian phenomena in the photore-
ceptor-pigment epithelial complex.
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