Intracellular pH Recovery from Alkalinization

Characterization of Chloride and Bicarbonate Transport by the Anion Exchange System of Human Neutrophils

LOUIS SIMCHOWITZ and AJUAH O. DAVIS

From the Department of Medicine, the John Cochran Veterans Administration Medical Center, and the Departments of Medicine and of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110

ABSTRACT The nature of the intracellular pH-regulatory mechanism after imposition of an alkaline load was investigated in isolated human peripheral blood neutrophils. Cells were alkalinized by removal of a DMO prepulse. The major part of the recovery could be ascribed to a Cl⁻/HCO₃⁻ counter-transport system: specifically, a one-for-one exchange of external Cl⁻ for internal HCO₃⁻. This exchange mechanism was sensitive to competitive inhibition by the cinnamate derivative UK-5099 (Kᵢ ~ 1 μM). The half-saturation constants for binding of HCO₃⁻ and Cl⁻ to the external translocation site of the carrier were ~2.5 and ~5.0 mM. In addition, other halides and lyotropic anions could substitute for external Cl⁻. These ions interacted with the exchanger in a sequence of decreasing affinities: HCO₃⁻ > Cl⁻ > NO₃⁻ > Br⁻ > I⁻ > SCN⁻ > PAH⁻. Glucuronate and SO₄²⁻ lacked any appreciable affinity. This rank order is reminiscent of the selectivity sequence for the principal anion exchanger in resting cells. Cl⁻ and HCO₃⁻ exhibited competition kinetics at both the internal and external binding sites of the carrier. Finally, evidence compatible with the existence of an approximately fourfold asymmetry (Michaelis constants inside > outside) between inward- and outward-facing states is presented. These results imply that a Cl⁻/HCO₃⁻ exchange mechanism, which displays several properties in common with the classical inorganic anion exchanger of erythrocytes, is primarily responsible for restoring the pHᵢ of human neutrophils to its normal resting value after alkalinization.

INTRODUCTION

In a previous article on intracellular pH (pHᵢ) regulation in isolated human neutrophils (Simchowitz and Roos, 1985) we undertook a systematic investigation of the factors that control steady-state pHᵢ in resting cells. By identifying the ion

Address reprint requests to Dr. Louis Simchowitz (151-JC), John Cochran V. A. Medical Center, 915 North Grand Avenue, St. Louis, MO 63106.
pathways responsible for maintaining pH$_i$ homeostasis, these studies serve as a basis for examining the proposed pH$_i$-dependent functions of these cells, which include phagocytosis, chemotaxis, superoxide radical generation, and degranulation (Segal et al., 1981; Klempern and Styrt, 1983; Simchowitz, 1985; Simchowitz and Cragoe, 1986). In our initial report (Simchowitz and Roos, 1985) we showed that human neutrophils possess two separate regulatory mechanisms for pH$_i$ homeostasis: one, a Na$^+$/H$^+$ exchange that restores pH$_i$ to its normal resting value (~7.25 at pH$_o$ 7.40) after imposed acidification, and the other, a Cl$^-$/HCO_3^- exchange that comes into play after imposed alkalinization.

As commented upon in the past (for review, see Roos and Boron, 1981), while a Na$^+$/H$^+$ exchange mechanism has been implicated in the recovery from acidification in a variety of cell types, the recovery from alkalinization and its ionic basis have received surprisingly little attention. Passive ion fluxes (Aickin and Thomas, 1977) and metabolic acid production (Boron et al., 1979) have been proposed as possible mechanisms. However, in human neutrophils (Simchowitz and Roos, 1985), as well as in sheep cardiac Purkinje fibers (Vaughan-Jones, 1981; 1982a, b), the predominant part of the pH$_i$ recovery process from alkalinization seems to be due to a Cl$^-$/HCO_3^- counter-transport (i.e., an exchange of external Cl$^-$ for internal HCO_3^-). In particular, it should come as no surprise that certain cells, which are likely to experience alkalinizing transients during their life histories (as, for example, neutrophils that are regularly exposed to chemotactic factors in vivo [Sha'afi et al., 1982; Grinstein and Furuya, 1984; Simchowitz, 1985]) should have evolved specific devices to facilitate the return of pH$_i$ to its normal resting value.

In our previous study (Simchowitz and Roos, 1985) we noted that pH$_i$ recovery from alkalinization could be almost completely ascribed to an exchange of external Cl$^-$ for internal HCO_3^- This conclusion was based on the observations that the recovery rate was dependent on external Cl$^-$, enhanced by HCO_3^-, and sensitive to α-cyano-4-hydroxycinnamate (CHO), an inhibitor of anion exchange in these cells (Simchowitz and De Weer, 1986; Simchowitz et al., 1986).

The purpose of this work was to examine the properties of this intracellular alkalinization-induced Cl$^-$/HCO_3^- exchange in more detail. Specifically, we sought to characterize the interaction of this transport system with its natural substrates, Cl$^-$ and HCO_3^- We found that recovery is stimulated by external Cl$^-$ with $K_m \sim 5$ mM and by internal HCO_3^- with $K_m \sim 10$ mM. In addition, pH$_i$ recovery from alkalinization is associated with an enhancement of one-way 36Cl$^-$ influxes and effluxes and with a net intracellular uptake of Cl$^-$, all of which are sensitive to competitive inhibition by UK-5099 ($K_i \sim 1 \mu$M). The transport rate of the exchanger is activated by the pH$_i$. Finally, evidence compatible with a fourfold carrier asymmetry is presented. These results represent a continuing biochemical characterization of the intracellular alkalinization-induced Cl$^-$/HCO_3^- exchange mechanism of human neutrophils, which plays a physiologic role in pH$_i$ regulation in these cells.

Materials and Methods

Incubation Media

The standard medium used throughout this study had the following composition: 140 mM NaCl, 5 mM KCl, 1 mM CaCl$_2$, 0.5 mM MgCl$_2$, 5 mM HEPES buffer, pH 7.40, and 1 mg/ml.
crystalline bovine serum albumin. Experiments were performed in glucose-free media, although after isolation cells were routinely kept in the standard medium supplemented with 5.6 mM glucose for at least 1 h before any other pretreatment (see below). To test the effects of different halides or other monovalent anions, media were prepared by equimolar substitutions of Br\(^{-}\), I\(^{-}\), NO\(^{-}\), SCN\(^{-}\), p-aminomhippurate (PAH\(^{-}\)), or glucuronate for Cl\(^{-}\). When divalent anions were being examined, the SO\(_4^{2-}\) concentration was 100 mM, and that of Na\(^+\) was 194 mM, while those of K\(^+\), Ca\(^{2+}\), and Mg\(^{2+}\) were the same as for the standard medium. Unless otherwise stated, all media were exhaustively bubbled with \(\text{N}_{2}\) to drive off CO\(_2\) gas and thus effectively reduce the HCO\(_3^{-}\) concentration of the media to zero.

Bicarbonate-containing solutions were prepared as follows: A stock solution was made by equilibrating a modified standard medium (equimolar replacement of 25 mM NaCl by NaHCO\(_3\)) in a 5% CO\(_2\):95% air atmosphere. This HCO\(_3^{-}\) stock solution was diluted with different volumes of CO\(_2\)/HCO\(_3^{-}\)-free Cl\(^{-}\) medium containing 5 mM HEPES, which had also been brought to pH\(_0\) 7.40. Thus, a series of solutions was available of different HCO\(_3^{-}\) concentrations (0–25 mM). During the cell incubations, the tubes were overlaid with mineral oil and capped to retard diffusion of CO\(_2\).

Media of high [K\(^{+}\)]\(_o\) (120 mM) were obtained by equimolar substitution of KCl for NaCl.

Neutrophils

Human peripheral neutrophils were isolated by sequential dextran sedimentation and Ficoll-Hypaque (Pharmacia Fine Chemicals, Piscataway, N\(J\)) gradient centrifugation (Boyum, 1968). The purification procedures and protocols for handling of the cells have been outlined in detail in previously published work (Simchowitz and De Weer, 1986).

The normal resting pH\(_i\) of steady-state human neutrophils bathed in nominally CO\(_2\)-free medium at pH\(_0\) 7.40 is ~7.25 (Simchowitz and Roos, 1985). The neutrophils were subjected to an intracellular alkalization according to the following protocol. Cells were first acidified by exposing them to the weak acid DMO (70 mM) in Cl\(^{-}\) (78 mM)-containing medium. The time course of the pH\(_i\) transients in response to application and subsequent removal of DMO is similar to that described previously by our group in cells treated with 18% CO\(_2\) (Simchowitz and Roos, 1985): there is an immediate (~5 s) initial fall of pH\(_i\) to ~6.80, a reduction of ~0.45 pH units. Over the next 30 min of incubation, during maintained DMO exposure, the pH\(_i\) recovers by ~0.20 units to reach a value of ~7.00, and then remains unchanged. When, after 30 min, the cells are resuspended in the original DMO-free medium, the pH\(_i\) rapidly and dramatically rises to ~7.80, i.e., ~0.55 units above control. After this imposed alkalization, the pH\(_i\) then returns to its normal resting value over the ensuing 15–20 min. The nature of this recovery process as a Cl\(^{-}\)/HCO\(_3^{-}\) exchange is the subject of this paper. It should be noted that the initial fall of pH\(_i\), due to the entry of the neutral (i.e., uncharged or acid) form of the DMO molecule and its subsequent dissociation to form H\(^+\) and DMO\(^{-}\). The partial pH\(_i\) recovery during maintained DMO exposure results from the removal of H\(^+\) from the cells by an acidification-induced Na\(^{+}\)/H\(^{+}\) exchange (Grinstein and Furuya, 1984; Simchowitz and Roos, 1985). The resulting H\(^+\) deficit leads to a pH\(_i\) overshoot when the DMO is removed, similar to the pattern observed in a number of other cell types (for review, see Roos and Boron, 1981).

For some experiments, batches of Cl\(^{-}\)-depleted neutrophils (internal Cl\(^{-}\) content ≤2 meq/liter of cell water) were used. The intracellular Cl\(^{-}\) depletion was achieved by prolonged (~5 h) incubation of cells in Cl\(^{-}\)-free, 148 mM PAH\(^{-}\) medium as previously described (Simchowitz and De Weer, 1986). In this case, Cl\(^{-}\) levels fall via a one-for-one exchange of internal Cl\(^{-}\) for external PAH\(^{-}\). Thus, the pH\(_i\) of these Cl\(^{-}\)-depleted cells remains normal.
Reagents

All inorganic salts were obtained from Fisher Scientific (St. Louis, MO). The following reagents were purchased from Sigma Chemical Co. (St. Louis, MO): D-glucose, crystalline bovine serum albumin, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 5,5-dimethyl-2-oxazolidine-2,4-dione (DMO), 2-deoxy-D-glucose (2-DOG), D-glucuronic acid, sodium glucuronate, \(p \)-aminohippuric acid (PAH), and sodium PAH. Isotopes (\(\text{H}^{36}\text{Cl} \), \(\text{[\(\text{14}\text{C}\]DMO} \), \(\text{[\(\text{3}\text{H}\}]\text{H}_2\text{O}\), and \(\text{[\(\text{14}\text{C}\]inulin}\) were purchased from New England Nuclear, Boston, MA. The specific activity of \(\text{H}^{36}\text{Cl} \) was 13.8 mCi/g Cl\(^{-}\). The anion transport inhibitor \(\alpha\)-cyano-\(\beta\)-(1-phenylindol-3-yl)acrylate (UK-5099), a potent analogue of \(\alpha\)-cyano-4-hydroxycinnamic acid (CHC; Halestrap and Denton, 1975), was a generous gift of Pfizer Central Research Laboratories (Sandwich, Kent, UK).

Intracellular pH Measurements

We derived pH\(_i\) from the distribution of the \(\text{14C}\)-labeled weak acid DMO (pK\(_a\) 6.13 at 37\(^\circ\)C). The theoretical considerations underlying the use of this method have previously been reviewed (Roos and Boron, 1981), as have details of the procedures currently used in our laboratory (Simchowitz and Roos, 1985).

Samples of the neutrophil suspensions (8-12 \(\times \) 10\(^6\) cells/ml) containing \(\text{[\(\text{14}\text{C}\]DMO} \) (1.0 \(\mu \)Ci/ml) were incubated in plastic tubes at 37\(^\circ\)C under various experimental conditions. The indicator concentration was <0.1 mM, which does not affect pH\(_i\) significantly. At intervals, triplicate 0.3-0.5-ml aliquots were layered over 0.7 ml of Versilube F-50 silicone oil (General Electric, Waterford, NY) contained in 1.5-ml plastic tubes and centrifuged for 1 min at 8,000 \(g \) in a microcentrifuge (Beckman Instruments, Inc., Palo Alto, CA). Cell separation occurred in <5 s. The neutrophil pellets were isolated, placed in scintillation vials, and counted in a liquid scintillation counter (LS 7000; Beckman Instruments, Inc.) after addition of 10 ml of Aquasol-2 (New England Nuclear).

Unidirectional \(\text{36Cl}^- \) Flux Measurements

The incubations were performed at 37\(^\circ\)C, and at stated intervals triplicate aliquots of the cell suspensions were layered on silicone oil and centrifuged as described above. The neutrophil pellets were excised and counted in a liquid scintillation counter. Influx experiments were performed in the presence of \(\text{36Cl}^- \) (1.5 \(\mu \)Ci/ml). For the efflux studies, neutrophils were first suspended at 2-3 \(\times \) 10\(^7\) /ml and incubated with \(\text{36Cl}^- \) (2.5 \(\mu \)Ci/ml) for 1-2 h at 37\(^\circ\)C.

Intracellular Cl\(^-\) Determinations

Neutrophils (15-20 \(\times \) 10\(^6\) /ml) were suspended in the various experimental media. Triplicate 1-ml aliquots were layered on 0.4 ml silicone oil and spun as described above. The aqueous and oil phases were aspirated and discarded. The neutrophil pellets were lysed in 1.0% Triton X-100 in water (vol/vol) and assayed coulometrically for Cl\(^-\) (Cotlove et al., 1958) using a chloridometer (Buchler Instruments, Fort Lee, NJ). Results are expressed in milliequivalents/liter of cell water after appropriate correction for total and extracellular water spaces using \(\text{[\(\text{3}\text{H}\}]\text{H}_2\text{O}\) and \(\text{[\(\text{14}\text{C}\]inulin}, respectively, as markers.

Data Analysis

In all cases, the influx of \(\text{36Cl}^- \), corrected for zero-time “uptake” (which represents label trapped in the extracellular space) followed equations of the form

\[
C_t = C_\infty [1 - \exp(-kt)],
\]
where \(C_t \) is the cell label at time \(t \), \(C_\infty \) is the cell label at steady state, and \(k \) is the rate coefficient. Eq. 1 was fit to the data by a nonlinear least-squares program, and the initial influx rate was computed from the product \(kC_\infty \). Similar fits to the data were applied in the analysis of the \([Cl^-]\) determinations by chloridometry and of the \(pHi \) transients during recovery from alkalinization. As indicated in the figure legends, the change in some of the measured variables often appeared to be linear over the period of study; in those cases, the influx rate was computed from the slope of the linear regression line.

The \(^{36}Cl^-\) effluxes followed single exponentials of the form:

\[
C_t = C_0 \exp(-kt),
\]

where \(C_0 \) is the cell label at zero time. Curves representing the equation were fit to the various groups of data by the least-squares method.

RESULTS

Intracellular pH Studies

The ionic basis of \(pHi \) recovery after an imposed alkalinization induced by the removal of a 70-mM DMO prepulse was studied by examining the effect of a number of transport inhibitors and by different ion substitutions in the bathing medium. The time course of \(pHi \) recovery is shown in Fig. 1. The \(pHi \) immediately after DMO removal (estimated by back-extrapolation of the slow course of recovery of \(Cl^-\) and \(HCO_3^-\)-free 148 mM glucuronate medium in the presence of 1 mM SITS [curve D]) was 7.94 ± 0.03. Thereafter, in the standard 148 mM \(Cl^-\) medium containing 0.5 mM HCO_3^-, the \(pHi \) recovered rapidly along an exponential time course (curve A) to reach a near-normal resting value by 15–20 min of incubation. The initial recovery rate was 0.0616 ± 0.0031 pH/min. In our original study on \(pHi \) regulation in human neutrophils (Simchowitz and Roos, 1985) we reported that the recovery process from alkalinization after removal of a \(CO_2 \) prepulse or during exposure to \(NH_4Cl \) was resistant to 0.1 mM ouabain and 1 mM amiloride. In addition, the data of Fig. 1 demonstrate that this course was not significantly affected (recovery rate = 0.0744 ± 0.0055 pH/min) by 1 mM 2-DOG (curve A), a metabolic inhibitor, which also blocks active inward \(Cl^-\) transport in neutrophils (Simchowitz and De Weer, 1986). The initial recovery rate for the combined data was 0.0671 ± 0.0027 pH/min.

In contrast, as previously reported, the addition of either 40 mM CHC (not shown), an inhibitor of anion exchange in human neutrophils (Simchowitz and De Weer, 1986; Simchowitz et al., 1986), or of 400 \(\mu \)M UK-5099 (curve B), a more potent analogue of CHC (Halestrap and Denton, 1975; Simchowitz, 1988b), moderately slowed recovery. In the latter case, the initial recovery rate was reduced from 0.0671 to 0.0375 ± 0.0029 pH/min, an inhibition of 44%. The actual extent of inhibition is much greater since at least some of the apparent recovery acidification is due to another, separate effect of the UK-5099 compound. This other, secondary consequence of UK-5099 is best seen in the moderate degree of intracellular acidification that occurs over time in control cells (curve H). As discussed previously in connection with CHC (Simchowitz and Roos, 1985), the greater part of this acidification is most likely due to the blocking effect of the drugs on lactic acid secretion: the rates and amounts of intracellular acidification and of lactic acid efflux...
FIGURE 1. Time course of pH\textsubscript{i} upon removal of a 70-mM DMO prepulse (solid lines). The pH\textsubscript{i} was 7.40 throughout. The cells were first exposed to 70 mM DMO for 30 min and then resuspended at zero time in DMO-free (except for the trace [14C]DMO label [<0.1 mM]) solutions of the following compositions: A, standard medium containing 5 mM K+, 148 mM Cl−, and 0.5 mM HCO\textsubscript{3}− (the curve also utilizes results obtained in the presence of 1 mM 2-DOG or 120 mM K+, each in the presence of 148 mM Cl− and 0.5 mM HCO\textsubscript{3}−); B, 400 \textmu M UK-5099 and 1 mM 2-DOG in 148 mM Cl−, 0.5 mM HCO\textsubscript{3}−; C, 148 mM glucuronate, with or without 0.5 mM HCO\textsubscript{3}− (combined data); D, 148 mM glucuronate and 1 mM SITS; E, 148 mM Cl−, 1 mM HCO\textsubscript{3}−; and F, 148 mM Cl−, 2 mM HCO\textsubscript{3}−. Curves B–F were all performed in media containing 5 mM K+. The dashed line (G) represents the time course of pH\textsubscript{i} of cells not exposed to 70 mM DMO, but kept in the standard 5 mM K+, 148 mM Cl− (0.5 mM HCO\textsubscript{3}−) medium throughout. They were then resuspended in solutions identical to those described above. Since the pH\textsubscript{i} values under all these conditions (with the exception of UK-5099) were indistinguishable, each of the points is the average of the combined pH\textsubscript{i} values. The dashed curve (H) signifies the pH\textsubscript{i} of control cells resuspended at zero time in 400 \textmu M UK-5099. Curves A–F and H represent single exponential fits to the individual sets of data. The initial recovery rates (in pH/minute) were 0.0671 ± 0.0027 (A), 0.0375 ± 0.0029 (B), 0.0153 ± 0.0019 (C), 0.0112 ± 0.0015 (D), 0.132 ± 0.021 (E), 0.248 ± 0.046 (F), and 0.0274 ± 0.0035 (H). A horizontal line (dashed, G) was drawn at 7.33, the average of all of the control data points. Results represent the means ± SEM of three to five separate experiments.
are reduced in parallel by lowering the glucose content of the media and suppressed even further in the presence of metabolic inhibition by 2-DOG. The experiments shown in Fig. 1 for 400 μM UK-5099 (curves B and H) were in fact performed in glucose-free media using cells treated with 1 mM 2-DOG, a maneuver that reduces lactic acid production by ~90%. The initial rate of acidification in resting cells (curve H) was 0.0274 ± 0.0035 pH/min. Subtracting this value from the total rate of "recovery" in the presence of UK-5099 (0.0375 pH/min, curve B) leaves 0.0101 pH/min, or only ~15% that of the normal rate (0.0671 pH/min, curve A).

In previous studies (Simchowitz and Roos, 1985) we also noted recovery to be dependent on the presence of extracellular Cl⁻ in the bathing solutions: in its absence (equimolar replacement by PAH) only a very slow recovery (~10% of normal) was observed. A similar dependence on external Cl⁻ is also shown in Fig. 1: when all extracellular Cl⁻ was replaced by glucuronate (a nominally inert anion), the recovery rate from alkalinization fell to 0.0153 ± 0.0019 pH/min (curve C), a rate ~20% of normal.

While 1 mM SITS has little or no effect on anion exchange in neutrophils in the standard 148 mM Cl⁻ medium (Simchowitz and De Weer, 1986), in later studies (Simchowitz, 1988b) conducted in the presence of low external Cl⁻ we found that the drug behaves as a weak competitive inhibitor of Cl⁻ with a "true" Kᵢ of ~100 μM in 148 mM glucuronate medium. The addition of 1 mM SITS to this nominally substrate (Cl⁻ and HCO₃⁻)-free glucuronate solution led to a slight further reduction in the initial rate of pHᵢ recovery from alkalinization to 0.0112 ± 0.0015 pH/min (curve D). The finding of the small degree of SITS sensitivity suggests the possibility that glucuronate may not be truly inert and might actually be transported inward in exchange for HCO₃⁻.

Recovery is also strikingly dependent on the amount of HCO₃⁻ in the bathing medium (and/or, through equilibration of CO₂, on HCO₃⁻ in the intracellular fluid). When precautions were taken to exclude HCO₃⁻ (use of HCO₃⁻-free NaOH and KOH, prolonged gassing of solutions with N₂, overlaying of media with mineral oil to prevent inward diffusion of CO₂), the recovery rate in nominally HCO₃⁻-free 148 mM Cl⁻ (0.0204 ± 0.0037 pH/min [not shown]) was significantly reduced relative to that in Cl⁻ medium containing 0.5 mM HCO₃⁻ (0.0671 pH/min, curve A). The rate in the nominal absence of HCO₃⁻ is slightly greater than that occurring in Cl⁻ medium containing 0.5 mM HCO₃⁻ (0.0153 pH/min, curve C) and also greater than the adjusted rate of recovery derived from studies in the presence of the anion exchange inhibitor UK-5099 (0.0101 pH/min), the difference probably reflecting a small amount of residual internal HCO₃⁻. In contrast, raising the external HCO₃⁻ concentration to 1 or 2 mM (0.2 or 0.4% CO₂, curves E and F) dramatically enhanced the rate of recovery (initial rates 0.132 ± 0.021 and 0.248 ± 0.046 pH/min, respectively) as compared with that under HCO₃⁻-free conditions.

The dependence on external Cl⁻, enhancement by HCO₃⁻ and sensitivity to CHC and UK-5099, which block anion exchange in human neutrophils (Simchowitz and De Weer, 1986; Simchowitz, 1988b), strongly suggest that the principal part of the pHᵢ recovery after imposed alkalinization is mediated through an exchange of external Cl⁻ for internal HCO₃⁻. In other cell types (Knauf, 1979; Vaughan-Jones, 1982a, b; Reuss and Costantin, 1984) Cl⁻/HCO₃⁻ exchange is electroneutral, a
finding consistent with the observed 1:1 stoichiometry of the counter-transport reaction. This also appears to be the case in neutrophils, where anion exchange has been shown to exhibit a 1:1 stoichiometry (Simchowitz et al., 1986). Moreover, recovery is independent of large changes in membrane potential: in 148 mM Cl\(^-\), 0.5 mM HCO\(_3\) medium the kinetics of recovery were indistinguishable at 5 mM K\(^+\) as compared with 120 mM K\(^+\) (initial rates 0.0680 ± 0.0041 vs. 0.0722 ± 0.0066 pH/min, respectively, curve A), where membrane voltage is about −60 and 0 mV, respectively (Simchowitz et al., 1982).

As previously reported (Simchowitz et al., 1986), glucuronate appears to be inert with respect to anion exchange and cannot be transported by the carrier due to a lack of affinity for the external translocation site. The ability of other replacement anions, each at 148 mM and in the presence of 0.5 mM HCO\(_3\), to substitute for Cl\(^-\) is evaluated in Fig. 2. In Br\(^-\) medium (initial recovery rate 0.0787 ± 0.0090 pH/min) recovery was similar to that in Cl\(^-\) medium (initial rate 0.0685 ± 0.0040 pH/min); those in NO\(_3\) and I\(^-\) were somewhat slower (initial rates 0.0531 ± 0.0033 and 0.0438 ± 0.0042 pH/min, respectively), while those in SCN\(^-\) and PAH\(^-\) media were considerably reduced (initial rates 0.0284 ± 0.0038 and 0.0209 ± 0.0031 pH/min, respectively). In contrast, recovery in 100 mM SO\(_4\)\(^2-\) medium (0.0164 ± 0.0017 pH/min) was not appreciably different from that in 148 mM glucuronate (0.0137 ± 0.0022 pH/min), which has been shown to be essentially inert for anion exchange. Thus, PAH\(^-\), SCN\(^-\), and especially SO\(_4\)\(^2-\) seem to be rather ineffective substrates for anion exchange due either to low affinity for the carrier and/or relatively slow transport rates. We shall return to this point shortly (see below). Apparently Br\(^-\), NO\(_3\), and, to a lesser extent, I\(^-\) can serve as effective substitutes for Cl\(^-\), since after the initial rise the pH fell with time to reach near-normal resting values (~7.35) by 15–20 min, along a time course roughly similar to that displayed in 148 mM Cl\(^-\) medium.

In a related series of experiments (not shown), after pretreatment with 70 mM DMO the cells were resuspended in 0.5 mM HCO\(_3\) media where the external concentrations of Cl\(^-\), Br\(^-\), I\(^-\), or NO\(_3\) were varied between 0 and 140 mM by equimolar replacement of glucuronate. Cl\(^-\)-depleted cells were used so as to provide a favorable driving force for net HCO\(_3\) efflux. As [Cl\(^-\)]\(_o\) was gradually raised, the initial rate of pH\(_i\) recovery increased along a Michaelis-Menten activation curve with an apparent K\(_m\)(Cl\(^-\)) of 4.2 ± 0.9 mM. Similarly, external NO\(_3\), Br\(^-\), and I\(^-\) each stimulated the rate of recovery with apparent K\(_m\) values of 5.6 ± 1.2, 7.5 ± 1.5, and 39.2 ± 12.8 mM, respectively.

The data of Fig. 1 indicate that recovery is very sensitive to the amount of HCO\(_3\) in the external (hence, also, the internal) solutions. The relationship of HCO\(_3\) to the rate of pH\(_i\) recovery is shown in a more detailed manner in Fig. 3, where the dose dependence of external HCO\(_3\) is presented in double-reciprocal fashion (Lineweaver-Burk plot). For these studies, the extracellular concentration of Cl\(^-\) was kept constant at 125 mM, while [HCO\(_3\)]\(_o\) was varied between 0.3 and 5 mM by equimolar replacement of glucuronate. With increasing external HCO\(_3\), the initial rate of pH\(_i\) recovery progressively rose. The data could be fit by Michaelis-Menten kinetics with an apparent K\(_m\) for external HCO\(_3\) of 8.7 ± 1.9 mM. Assuming complete equilibration of CO\(_2\) across the cell membrane and a pH\(_i\) of 7.97 (average of Figs. 1 and 2) at the start of pH\(_i\) recovery, the internal HCO\(_3\) concentrations are
actually 3.7-fold higher than the corresponding [HCO₃⁻]ᵣ values. Thus, assuming internal HCO₃⁻ to be the relevant exchange partner for external Cl⁻, the apparent Kₗ for external HCO₃⁻ of 8.7 ± 1.9 mM translates into an apparent Kₗ for internal HCO₃⁻ that is 3.7-fold higher, or 32.2 ± 7.0 mM.

Figure 2. Time course of pHᵢ recovery from alkalinization in the presence of different anions in the extracellular fluid (see legend to Fig. 1). After a 30-min pretreatment with 70 mM DMO, the neutrophils were resuspended in 5 mM K⁺, 0.5 mM HCO₃⁻ medium in which the major extracellular monovalent anion (148 mM) was either Cl⁻, Br⁻, I⁻, NO₃⁻, SCN⁻, PAH⁻, or glucuronate. In the case of the divalent anion SO₄²⁻, its concentration in the bathing medium was 100 mM (5 mM K⁺, 194 mM Na⁺) in order to maintain isotonicity. The curves are all single exponential fits to the data with initial rates (in pH/minute) of 0.0685 ± 0.0040 (Cl⁻), 0.0787 ± 0.0090 (Br⁻), 0.0531 ± 0.0033 (NO₃⁻), 0.0438 ± 0.0042 (I⁻), 0.0284 ± 0.0038 (SCN⁻), 0.0209 ± 0.0031 (PAH), and 0.0154 ± 0.0013 (combined glucuronate and SO₄²⁻). The dashed line represents the time course of pHᵢ of the combined controls in Cl⁻, Br⁻, NO₃⁻, I⁻, SCN⁻, and PAH⁻ medium. The data sets for cells not exposed to DMO and then resuspended in 148 mM glucuronate or 100 mM SO₄²⁻ medium have been omitted; they exhibited a gradual intracellular alkalinization due to an exchange of internal Cl⁻ for the small amount of external HCO₃⁻ present in these otherwise inert media. Results are from three to five experiments.

As measured chemically by chloridometry, the intracellular Cl⁻ content of neutrophils pretreated with 70 mM DMO (and 78 mM Cl⁻) for 30 min is ~50 meq/liter of cell water (see below). On the other hand, the normal intracellular Cl⁻ concentration of steady-state cells bathed in the standard 148 mM Cl⁻ medium is ~80 meq/liter of...
cell water (Simchowitz and De Weer, 1986). Internal Cl⁻ depletion (to a level ≤2 meq/liter of cell water) by prolonged incubation in Cl⁻-free, 148 mM PAH⁺ medium substantially altered the affinity for internal HCO₃⁻. When the experiments of Fig. 3 were repeated on cells containing little or no Cl⁻, the rate of pHᵢ recovery from alkalinization was still a direct function of the HCO₃⁻ concentration, but in this case the K_m for external HCO₃⁻ was only 2.6 ± 0.8 mM, or about threefold lower than with control Cl⁻ cells. As above, this value corresponds to a K_m for internal HCO₃⁻ that is 3.7 times greater, or 9.6 ± 3.0 mM. The difference in apparent K_m values for internal HCO₃⁻ in control Cl⁻ as compared with Cl⁻-depleted cells (32.2 vs. 9.6 mM) indicates that, as expected, Cl⁻ and HCO₃⁻ behave as competing substrates for the same transport sites on the Cl⁻/HCO₃⁻ exchanger.

![Figure 3](image-url)

Figure 3. Stimulation by bicarbonate of the rate of pHᵢ recovery from intracellular alkalinization: effect of internal Cl⁻ depletion. Normal Cl⁻ neutrophils (internal Cl⁻ ~80 meq/liter of cell water) were kept in the standard 148 mM Cl⁻ medium before exposure to DMO. The Cl⁻-depleted cells (internal Cl⁻ ≤ 2 meq/liter of cell water) were obtained by prolonged (~5 h) incubation in Cl⁻-free, 148-mM PAH⁻ medium at 37°C. These cells were then preincubated with a 70-mM DMO solution, also containing 78 mM PAH⁻. After the 30-min DMO pretreatment period the cells were resuspended in 5 mM K⁺, 125 mM Cl⁻ medium in which the concentration of HCO₃⁻ was varied between 0.31 and 5 mM (replacing glucuronate). The pHᵢ was measured at two or more times (between 1 and 10 min, as appropriate) during the course of pHᵢ recovery. The initial recovery rates were calculated by fitting the pHᵢ data points to single exponential equations (Eq. 1) as in Figs. 1 and 2. The recovery rate in an all-glucuronate (148 mM) medium was taken as background and subtracted from all other values. Results, which are from four experiments, have been graphed in the form of a Lineweaver-Burk (double-reciprocal) plot. The fits yielded the following kinetic parameters for external HCO₃⁻: for control Cl⁻ cells, $K_m = 8.7 ± 1.9$ mM and $V_{max} = 1.16 ± 0.12$ pH/min; for Cl⁻-depleted cells, $K_m = 2.6 ± 0.8$ mM and $V_{max} = 1.03 ± 0.09$ pH/min.
In this section we complement the work on pH_i transients with direct measurements of unidirectional 36Cl$^-$ influxes and effluxes and net Cl$^-$ movements using a chloridometer. The time courses of one-way 36Cl$^-$ influx and net Cl$^-$ influx from a 0.5 mM HCO$_3^-$, 148 mM Cl$^-$ medium are presented in Fig. 4, A and B. In both instances the kinetics of uptake could be adequately described by a single exponential equation: the internal 36Cl$^-$ and total Cl$^-$ contents rose at initial rates of 19.4 ±
3.8 and 3.13 ± 0.63 meq/liter·min, respectively, to reach final extrapolated levels of 75.3 ± 4.6 and 80.2 ± 7.2 meq/liter of cell water. As shown in Fig. 4 B, the internal Cl⁻ content of alkalinized cells rose from 49.2 ± 4.5 meq/liter of cell water to reach a value of 80.2 ± 7.2 meq/liter of cell water at full pHᵢ recovery. The ~30-mM gain in intracellular Cl⁻ represents a maximal estimate for the influx of Cl⁻ through Cl⁻/HCO₃⁻ exchange during that period. Similarly, the final steady level of [¹³⁵]Cl⁻ uptake (75.3 ± 4.6 meq/liter of cell water) signifies a net rise in intracellular Cl⁻ of 75.3 – 49.2, or 26.1 meq/liter of cell water during the full recovery period. (The reduction in internal Cl⁻ in cells pretreated with 70 mM DMO as compared with normal cells bathed in 148 mM Cl⁻ medium [~50 vs. ~80 meq/liter of cell water] is probably due to replacement of Cl⁻ by DMO⁻ after its entry and dissociation within the cytoplasm. Assuming equilibration of the uncharged form of DMO (pK₈ 6.13) across the membrane and a measured pHᵢ of ~7.10 at the end of the 30-min preincubation period, the cells should have contained ~33 mM of DMO in the anionic form. This amount is consistent with the extent of the observed reduction in the level of intracellular Cl⁻ in these cells.)

Assuming an average intracellular buffering power of 50 mM/pH over the entire course of pHᵢ recovery (Simchowitz and Roos, 1985) and a 1:1 exchange of internal HCO₃⁻ for external Cl⁻, total recoveries of 0.62 and 0.52 pH units (Δ[Cl⁻]/β) may be predicted. These values are in reasonably good agreement with the 0.61 and 0.64 pH unit recoveries actually observed (Figs. 1 and 2). Likewise, the initial rate of net Cl⁻ uptake (3.13 ± 0.63 meq/liter·min), if completely coupled to Cl⁻/HCO₃⁻ exchange, signifies a pHᵢ recovery rate of 3.13/β, or 0.063 pH/min, which agrees well with those (0.067 and 0.069 pH/min) estimated from the time course of pHᵢ recovery (Figs. 1 and 2).

The one-way [¹³⁵]Cl⁻ and net Cl⁻ influxes were markedly inhibited by 400 µM UK-5099: in its presence the initial influx rates were reduced from 19.4 to 0.93 – 0.08 and from 3.13 to 0.32 ± 0.19 meq/liter·min, respectively (i.e., inhibitions of 95 and 90%). This is as expected if these fluxes were mediated principally by transport through a UK-5099-sensitive Cl⁻/HCO₃⁻ exchange mechanism that is activated by intracellular alkalinization.

Substrate saturation is shown in Fig. 5, where the external Cl⁻ dependence of [¹³⁵]Cl⁻ influx is depicted. The relationship obeyed saturation kinetics: as [Cl⁻]ₒ was varied between 0.3 and 140 mM (replacing glucuronate), the initial rate of [¹³⁵]Cl⁻ influx rose along a Michaelis-Menten activation curve with an apparent Kᵢ(Cl⁻) of 5.8 ± 1.5 mM, similar to the value of 4.2 ± 0.9 mM derived from the external Cl⁻ dependence of pHᵢ recovery.

Substrate interactions between Cl⁻ and several other anions are documented in Fig. 6, where the ability of extracellular Br⁻, I⁻, NO₃⁻, HCO₃⁻, PAH⁻, SCN⁻, and SO₄²⁻ to compete with [¹³⁵]Cl⁻ at the external transport site of the exchanger was tested. In these experiments [¹³⁵]Cl⁻ influx from a 5-mM Cl⁻ medium was measured in the presence of 0–140 mM (0–20 mM for HCO₃⁻) of the test anion. For Br⁻ and I⁻, inhibition of alkalinization-induced [¹³⁵]Cl⁻ influx followed Michaelis-Menten kinetics with apparent Kᵢ values of 9.8 ± 2.1 and 93.4 ± 36.0 mM, respectively. In the presence of two competing substrates, S₁ and S₂, the apparent Kᵢ is related to the
true kinetic constant as given by the expression

$$\text{apparent } K_m(S_1) = \text{true } K_m(S_1) \left(1 + \frac{[S_2]}{K_m(S_2)} \right).$$ \(3\)

Since, for the experiments presented in Fig. 6, external Cl\(^-\) was present at a concentration near its true \(K_m\), the apparent inhibitory constants for Br\(^-\) and I\(^-\) should be about twice the true \(K_m\) values (7.5 \(\pm\) 1.5 and 39.2 \(\pm\) 12.8 mM, respectively, for \([\text{Br}^-]_o\) and \([\text{I}^-]_o\) activation of pH\(_i\) recovery). This was indeed the case.

The ability of nonhalide anions to compete with \(^{36}\text{Cl}^-\) for binding to the exchanger was also investigated. Bicarbonate, NO\(_3^-\), SCN\(^-\), and PAH\(^-\) all inhibited the initial rate of \(^{36}\text{Cl}^-\) influx from a 5-mM Cl\(^-\) medium with apparent \(K_i\) values of 5.3 \(\pm\) 1.4, 8.4 \(\pm\) 2.0, 111 \(\pm\) 28, and 154 \(\pm\) 65 mM (or from Eq. 3, true \(K_m\) values of \(\sim\)2.6, 4.2, 56, and 77 mM), respectively. As shown in Fig. 2, we also found the initial rates of pH\(_i\) recovery in 148 mM Br\(^-\), NO\(_3^-\), and I\(^-\) media to be of the same order as that in 148 mM Cl\(^-\). These results imply, therefore, that Br\(^-\), NO\(_3^-\), and I\(^-\) are also transported inward via the carrier in exchange for HCO\(_3^-\). On the contrary, the divalent anion SO\(_4^{2-}\), at external concentrations of 0–95 mM, had no effect at all on the rate of \(^{36}\text{Cl}^-\) influx. These findings suggest that the anion exchange system of human neutrophils possesses little, if any, affinity for SO\(_4^{2-}\), unlike the situation in human erythrocytes where Cl\(^-\) and SO\(_4^{2-}\) bind to the inorganic anion exchanger with closely similar \(K_m\) values (Barzilay and Cabantchik, 1977; Schnell et al., 1977; Milanick and Gunn, 1982).
Data on the time course of $^{36}\text{Cl}^-$ efflux after DMO withdrawal are presented in Fig. 7. Intracellular alkalinization caused an increase in the rate of $^{36}\text{Cl}^-$ efflux from the cells: resuspension of the neutrophils in 0.5 mM HCO$_3^-$, 148 mM Cl$^-$ medium led to a substantial, though transient, stimulation of $^{36}\text{Cl}^-$ efflux (curve A), whose time course (i.e., a single exponential) roughly paralleled that of pH$_i$ recovery under the same conditions (Fig. 1).

Figure 6. Substrate competition: effect of different halides and other mono- and divalent anions on the rate of $^{36}\text{Cl}^-$ influx from a 5-mM Cl$^-$ medium. See legend to Fig. 3. The external concentrations of each of the ions (Br$^-$, I$^-$, NO$_3^-$, SCN$^-$, or PAH$^+$) was varied between 0 and 140 mM (0 and 20 mM for HCO$_3^-$; 0 and 95 mM for SO$_4^{2-}$) by replacement of glucuronate. The $^{36}\text{Cl}^-$ influx rates were derived as in Fig. 4 and plotted against the external concentration of the competing anion. Except for SO$_4^{2-}$, all other curves are least-squares fits of Michaelis-Menten inhibition equations to the data. The apparent K_i values were 5.3 \pm 1.4, 8.4 \pm 2.0, 9.8 \pm 2.1, 93.4 \pm 36.0, 111 \pm 28, and 154 \pm 65 mM for HCO$_3^-$, NO$_3^-$, Br$^-$, I$^-$, SCN$^-$, and PAH$^+$, respectively. In the case of SO$_4^{2-}$, the data were fit by a straight line with slope $= -0.0063 \pm 0.0102$. Results are from three experiments for each anion.

The initial $^{36}\text{Cl}^-$ efflux rate was 15.6 \pm 2.3 meq/liter-min, sevenfold greater than that of controls (2.11 \pm 0.18 meq/liter-min) where resting pH$_i$ was ~7.35. Therefore, the net $^{36}\text{Cl}^-$ influx rate, computed from the difference between one-way $^{36}\text{Cl}^-$ influx and efflux was 18.1 (average of Figs. 4 A and 5) minus 15.6 = 2.5 meq/liter-min, a value similar to that measured chemically by chloridometry (3.13 \pm 0.63 meq/liter-min, Fig. 4 B). The augmentation of $^{36}\text{Cl}^-$ efflux that was
FIGURE 7. Time course of $^{36}\text{Cl}^{-}$ efflux into 148 mM Cl$^{-}$, 0.5 mM HCO$_3^-$ medium during pHi recovery from alkalinization. The neutrophils had been preincubated with 2.5 μCi/ml $^{36}\text{Cl}^{-}$ in 148 mM Cl$^{-}$ medium for ~2 h. Aliquots of the cell suspensions were then exposed to 70 mM DMO for 30 min (solid lines). Controls (dashed lines) were kept in 148 mM Cl$^{-}$ medium. After being pelleted, the cells were resuspended in 148 mM Cl$^{-}$, 0.5 mM HCO$_3^-$ in the presence or absence of 400 μM UK-5099. Results are from four experiments. The curves represent declining single exponential fits (Eq. 2) to the individual sets of data. In the special case of cells alkalinized by pretreatment with DMO (curve A), the data points were fit to a program in which the efflux was divisible into two components: (a) a falling single exponential representing the alkalinization-induced transient, and (b) upon complete pHi recovery, a residual rate coefficient equal to that of control cells. The efflux rate coefficients for curves A–D were (in minutes$^{-1}$) as follows: 0.474 ± 0.069 (the exponential terminating at a relative Cl$^{-}$ content of 0.341 ± 0.021), 0.0180 ± 0.0010, 0.0264 ± 0.0023, and 0.0064 ± 0.0012, respectively. Assuming a zero-time internal Cl$^{-}$ content of 50 meq/liter of cell water (from Fig. 4 B) for cells pretreated with 70 mM DMO (curves A and B) and a zero-time [Cl$^{-}$], value of 80 meq/liter of cell water (the normal resting value [Simchowitz and De Weer, 1986]) for control cells (curves C and D), these rate coefficients signify initial $^{36}\text{Cl}^{-}$ efflux rates of 15.6 ± 2.3, 0.90 ± 0.05, 2.11 ± 0.18, and 0.52 ± 0.09 meq/liter·min for curves A–D, respectively.
associated with pH,
recovery from alkalinization was markedly sensitive to 400 \(\mu \text{M} \) UK-5099: efflux in the presence of the drug was reduced from 15.6 to 0.90 \(\pm \) 0.05 meq/liter-min, an inhibition of 94%.

Data on the rate of \(^{36}\text{Cl}^- \) efflux as a function of external \(\text{Cl}^- \) (0.6–140 mM, replacing glucuronate) are given in Fig. 8. Raising \([\text{Cl}^-]_o \) from 0.6 toward 140 mM led to a gradual enhancement of the rate of \(^{36}\text{Cl}^- \) efflux from the cells. External \(\text{Cl}^- \) stimulated its own efflux along a Michaelis-Menten activation curve with an apparent \(K_m(\text{Cl}^-) \) of 7.2 \(\pm \) 1.4 mM. Since the carrier appears to be devoid of affinity for glucuronate, the Michaelis constant for \(\text{Cl}^- \) in glucuronate medium is a reasonable estimate of its true \(K_m \). This value agrees well with the \(K_m \) values of 4.2 \(\pm \) 0.9 and 5.8 \(\pm \) 1.5 mM for the \([\text{Cl}^-]_o \) dependence of pH,
recovery and \(^{36}\text{Cl}^- \) influx (Fig. 5).

![Figure 8](https://example.com/figure8.png)

Figure 8. Activation of intracellular alkalinization-induced \(^{36}\text{Cl}^- \) efflux by external \(\text{Cl}^- \) (replacing glucuronate). See legend to Fig. 5. Cells were labeled with \(^{36}\text{Cl}^- \) and pretreated with 70 mM DMO as described in Fig. 7. The neutrophils were then resuspended in media in which the concentration of \(\text{Cl}^- \) was varied between 0.6 and 140 mM by equimolar replacement of glucuronate. The efflux of \(^{36}\text{Cl}^- \) was measured at 2 and 4 min and the initial efflux rates calculated by fitting the data points to a declining exponential (Eq. 2). A UK-5099-insensitive background of \(-0.5\) meq/liter-min, representing a leak flux, was subtracted from all values. The starting (zero time) internal \(\text{Cl}^- \) content was taken as 50 meq/liter of cell water. The initial \(^{36}\text{Cl}^- \) efflux rates were plotted against \([\text{Cl}^-]_o \). The curve represents a Michaelis-Menten activation equation which yielded a \(K_m \) for \(\text{Cl}^- \) of 7.2 \(\pm \) 1.4 mM and a \(V_{\text{max}} \) of 14.1 \(\pm \) 0.7 meq/liter-min. The results are from three experiments.

Fig. 9 displays the effect of \(\text{HCO}_3^- \) on \(^{36}\text{Cl}^- \) efflux. The data have been graphed in the form of a Dixon plot (1/\(v \) vs. \(I \)). For these experiments, the medium contained \(\text{Cl}^- \) at 125 mM, a saturating concentration, while \([\text{HCO}_3^-]_o\) was varied between 0 and 5 mM by equimolar replacement of glucuronate. At first sight, the potential interactions between \(\text{HCO}_3^- \) and \(\text{Cl}^- \) at both the internal and external translocation sites of the carrier appear to be quite complex. For instance, \(\text{HCO}_3^- \) might be expected to have two opposite effects on the efflux of \(^{36}\text{Cl}^- \) from the intracellular compartment: (a) inhibition, by competing with \(^{36}\text{Cl}^- \) on the cis (internal) side, and (b) activation, by stimulating exchange as an additional exchange partner on the trans side. However, under the conditions of the experiment, namely saturating external \(\text{Cl}^- \) (i.e., \([\text{Cl}^-]_o \) \~25 times its \(K_m \), this latter effect becomes negligible. This is
especially true since the maximal transport rates for Cl\textsuperscript-- and HCO\textsubscript3\textsuperscript-- are the same. Thus, under the conditions outlined above, the principal effect of added HCO\textsubscript3\textsuperscript-- is at the carrier's internal binding site. As shown in Fig. 9, increasing [HCO\textsubscript3\textsuperscript--]\textsubscript{o} between 0 and 5 mM caused a progressive reduction in the 36Cl\textsuperscript-- efflux rate. Inhibition followed Michaelis-Menten kinetics with an "apparent K\textsubscript{i}" for external HCO\textsubscript3\textsuperscript-- of 11.1 ± 2.8 mM. This value is in reasonable agreement with the determination of 8.7 ± 1.9 mM for the "apparent K\textsubscript{m}" for external HCO\textsubscript3\textsuperscript-- activation of pH\textsubscript{i} recovery (Fig. 3). As noted above, at a pH\textsubscript{i} of ~7.97 at the start of recovery and a pH\textsubscript{o} of 7.40, [HCO\textsubscript3\textsuperscript--]\textsubscript{i} exceeds [HCO\textsubscript3\textsuperscript--]\textsubscript{o} by a factor of 3.7. Thus, the data of Fig. 9 imply an apparent K\textsubscript{m} for internal HCO\textsubscript3\textsuperscript-- that is 3.7-fold higher, or 41.1 ± 10.4 mM.

In Fig. 7 we noted that 400 \textmu M UK-5099 inhibited the alkalinization-induced rate of 36Cl\textsuperscript-- efflux by >90%. Fig. 10 presents data on the efflux of 36Cl\textsuperscript-- into 148 mM Cl\textsuperscript-- or 2.5 mM HCO\textsubscript3\textsuperscript-- (balance glucuronate) medium as a function of the concentration of UK-5099 (0–400 \textmu M). Raising the amount of added drug caused the 36Cl\textsuperscript-- efflux rate to fall along Michaelis-Menten inhibition curves which yielded apparent K\textsubscript{i} values for UK-5099 of 43.9 ± 10.5 and 2.3 ± 0.5 \textmu M in 148 mM Cl\textsuperscript-- and 2.5 mM HCO\textsubscript3\textsuperscript--, respectively. The difference in apparent K\textsubscript{i} values may be satisfactorily explained by considering the effects of a competitive inhibitor (UK-5099) in the presence of widely different concentrations of two high affinity substrates (i.e., Cl\textsuperscript-- and HCO\textsubscript3\textsuperscript-- are present at roughly 30 and 1 times their respective K\textsubscript{m} values at the external site of the exchange carrier). On this basis, and from Eq. 3, the apparent K\textsubscript{i} for UK-5099 in 148 mM Cl\textsuperscript-- should exceed that in 2.5 mM HCO\textsubscript3\textsuperscript-- by a factor of

\textbf{FIGURE 9.} Inhibition of intracellular alkalinization-induced 36Cl\textsuperscript-- efflux by internal HCO\textsubscript3\textsuperscript--. See legend to Fig. 8, except that efflux experiments were conducted in 125 mM Cl\textsuperscript-- medium in which the external concentration of HCO\textsubscript3\textsuperscript-- was varied between 0 and 5 mM (replacing glucuronate). Initial 36Cl\textsuperscript-- efflux rates were calculated as in Fig. 7 on the assumption of a zero time [Cl\textsuperscript--]\textsubscript{i} of 50 meq/liter of cell water, the value determined by chloridometry (Fig. 4 B). The initial efflux rates were graphed against the corresponding extracellular HCO\textsubscript3\textsuperscript-- concentrations in the form of a Dixon plot (1/v vs. I). The fit yielded an apparent K\textsubscript{i} for external HCO\textsubscript3\textsuperscript-- of 11.1 ± 2.8 mM. On the assumption that CO\textsubscript{2} is equilibrated across the cell membrane and that zero time pH\textsubscript{i} (at the start of recovery) is 7.97, [HCO\textsubscript3\textsuperscript--]\textsubscript{i} = 3.7[HCO\textsubscript3\textsuperscript--]\textsubscript{o}. Thus, the data imply an apparent K\textsubscript{m} for internal HCO\textsubscript3\textsuperscript-- in the presence of 50 mM Cl\textsuperscript-- of 41.1 ± 10.4 mM.
which it does (43.9 vs. 2.3 μM). Substituting the appropriate values ($K_m(\text{Cl}^-) = 5.0 \text{ mM}$ and $[\text{Cl}^-]_o = 148 \text{ mM}$ or $K_m(\text{HCO}_3^-) = 2.6 \text{ mM}$ and $[\text{HCO}_3^-]_o = 2.5 \text{ mM}$) into Eq. 3, one may derive the two closely similar estimates of 1.4 and 1.2 μM for the true K_i value of UK-5099 in Cl$^-$ and HCO$_3^-$ media, respectively.

DISCUSSION

Bicarbonate-dependent Transport Systems in Other Cells

The existence of HCO$_3^-$-transporting pH$_i$ regulatory mechanisms has been reported in a wide variety of animal cells. For example, a Na$^+$/HCO$_3^-$-Cl$^-$/H$^+$ exchanger is present in several invertebrate species (Thomas, 1977; Boron et al., 1981; Boron and Russell, 1983). It is likely that a similar mechanism occurs in human epidermoid carcinoma cells (Rothenberg et al., 1983), hamster fibroblasts (L’Allemain et al., 1985), and monkey kidney cells (Tonnessen et al., 1987), where a Na$^+$-dependent Cl$^-$/HCO$_3^-$ exchange has been described. On the other hand, in human erythrocytes (Knauf, 1979), mouse skeletal muscle (Aickin and Thomas, 1977), mouse Ehrlich ascites tumor cells (Hoffmann, 1982, 1986), and guinea pig smooth muscle (Aickin and Brading, 1984, 1985), to name a few, a Na$^+$-independent Cl$^-$/HCO$_3^-$ exchange system has been implicated in the regulation of intracellular pH.

Compared with the abundance of information in diverse cell types concerning mechanisms of acid extrusion, the processes underlying recovery from intracellular alkalination have received relatively little attention. Using a sheep cardiac Purkinje
fiber preparation, Vaughan-Jones (1981, 1982a, b) was the first to clearly demonstrate a specialized transport system by identifying a SITS-sensitive Cl−/HCO3− exchange as being chiefly responsible for the pH recovery from alkalinization. Since then, analogous mechanisms have been demonstrated to occur in human neutrophils (Simchowitz and Roos, 1985) and monkey kidney (Vero line) cells (Olsnes et al., 1986; Tonnessen et al., 1987).

The Cl−/HCO3− exchangers of Purkinje fibers (Vaughan-Jones, 1979; 1982a, b) and Vero cells (Olsnes et al., 1986; Madshus and Olsnes, 1987; Tonnessen et al., 1987) display several features in common with those described in the present article on human neutrophils. These are as follows: (a) When the cytosol has been alkalinized, the uptake of Cl− occurs much more rapidly as compared with cells with a normal pH. (b) Activity of the exchanger is very sensitive to changes in pH in the physiological range (see also Simchowitz, 1988b). Similar findings have also been observed in L, HeLa, and Hep-2 cells (Olsnes et al., 1986), suggesting that this may be a common occurrence in mammalian cells. (c) The ability of cells to recover after imposition of an alkaline load is greatly enhanced by the presence of HCO3−.

Recycling of HCO3−

The product of the intrinsic buffering power (50 mM/pH) and the full extent of the pH change during recovery from alkalinization (~0.6 pH units) indicates that a total of ~30 meq HCO3−/liter of cell water must leave the cytosol. Since the intracellular HCO3− content at the start of recovery is only ~2 mM (pH = 8.0, pHo = 7.40, and [HCO3−]o = 0.5 mM), recycling of HCO3− through the Jacobs-Stewart cycle seems likely. However, it is also clear that anion exchange rather than the hydration/dehydration of CO2 constitutes the rate-limiting step in pH recovery. Though we are presently unaware of any published work regarding carbonic anhydrase levels in neutrophils, it is evident that the spontaneous (uncatalyzed) hydration rate of CO2 would be more than sufficient to provide adequate amounts of HCO3− for recycling. Given that the spontaneous rate of H2CO3 formation takes place with a half-time of ~5 s at 37°C (Parsons, 1982; Lowe and Lambert, 1983), it is difficult to envision how this might hamper a pH recovery process that is 50% complete by ~6 min. In keeping with this analysis, exogenous carbonic anhydrase (500 U/ml) did not significantly enhance, and 1 mM acetazolamide, which blocks the enzyme, did not inhibit the rate of pH recovery (data not shown).

Evidence for Carrier Asymmetry

At its internal translocation site, the carrier displays an apparent binding constant for HCO3− of ~10 mM in Cl−-depleted cells (where internal Cl− and PAH− are, respectively, ~2 and ~50 meq/liter of cell water), and an apparent Km(HCO3−) of ~32 mM in Cl−-containing cells (internal Cl− ~50 meq/liter of cell water). As PAH− is a rather low affinity substrate (Km ≥ 10-fold that of Cl−), the apparent binding constant for internal HCO3−, measured in the presence of PAH−, may be taken as a rough approximation of the true kinetic constant. The observation that HCO3− binds
to the internal translocation site with a $K_m \sim 10 \text{ mM}$ and to the external site of the exchanger with a $K_m \sim 2.5 \text{ mM}$ strongly suggests the possibility of a fourfold asymmetry between inward- and outward-facing conformations. Since thermodynamic considerations dictate the same relative rank order of affinities for all ions on both sides of the membrane (Frohlich and Gunn, 1986), these findings imply that the true K_m for internal Cl^- is also fourfold greater than its K_m for external Cl^- ($\sim 5 \text{ mM}$) or $\sim 20 \text{ mM}$. If the true K_m (internal HCO_3^-) and the true K_m (internal Cl^-) were ~ 10 and $\sim 20 \text{ mM}$, then, substituting the appropriate values in Eq. 3, the apparent K_m for internal HCO_3^- measured in Cl^--containing cells ($[\text{Cl}^-]_i \sim 50 \text{ meq/liter of cell water}$) should come to $\sim 35 \text{ mM}$. Indeed, this is similar to the value of $\sim 32 \text{ mM}$ actually observed.

Other evidence consistent with an asymmetrical carrier in neutrophils was first published in our original report on anion exchange in resting cells (Simchowitz et al., 1986), although it was not pursued at the time. In that study we noted that Cl^- binds to the carrier’s external site with a K_m of 5.0 mM and with an apparent K_m of $\sim 35 \text{ mM}$ when intracellular Cl^- was varied reciprocally with PAH$^-$ (i.e., $[\text{Cl}^-]_i + [\text{PAH}^-]_i \sim 80 \text{ meq/liter of cell water}$). Under these conditions, activation of Cl^- efflux by internal Cl^- follows a Michaelis-Menten equation where

$$\text{apparent } K_m(\text{Cl}^-) = K_m(\text{Cl}^-) \cdot \frac{K_m(\text{PAH}^-) + 80}{K_m(\text{PAH}^-) - K_m(\text{Cl}^-)}.$$

(4)

Since, for reasons given above, $K_m(\text{PAH}^-)$ must always exceed $K_m(\text{Cl}^-)$ by a factor of 10, substituting 10 $K_m(\text{Cl}^-)$ for $K_m(\text{PAH}^-)$ and 35 mM for apparent $K_m(\text{Cl}^-)$ in Eq. 4, one may derive an estimate of the true K_m value for internal Cl^- of 24 mM. Compared with a measured K_m for external Cl^- of only 5 mM, this result also suggests the existence of an approximately fourfold asymmetry between inside and outside carrier states. Presently we cannot definitely exclude the presence of an unidentified competing ligand inside the cell, rather than a genuine carrier asymmetry.

Cl^--independent pH_i Recovery

As stated above, the exchange carrier appears to be devoid of affinity for glucuronate and SO_4^{2-}. Nonetheless, from the data of Figs. 1 and 2, it is evident that there is an appreciable pH_i recovery in these media ($\sim 20\%$ of that in $148 \text{ mM } \text{Cl}^-$ medium), which is also comparable to the UK-5099-resistant component. Moreover, resuspension of alkalinized cells in substrate-free glucuronate or SO_4^{2-} media would be expected to lead to a further rise in pH_i due to reversed $\text{Cl}^-/\text{HCO}_3^-$ exchange, the latter being driven by the large outward gradient for Cl^-. Such a secondary alkalinization could not be detected, however, further implying the presence of a separate pH_i recovery process or processes independent of anion exchange.

This as yet unidentified process could conceivably represent metabolic acid production or perhaps passive leak fluxes of HCO_3^-, H^+, and/or OH^-. A significant contribution of metabolic acid production seems unlikely, since 2-DOG, which blocks anaerobic glycolysis and leads to intracellular ATP depletion and reduced lactic acid production, did not appreciably alter the slow recovery in 148 mM glucuronate medium. On the other hand, this minor component of recovery could in
theory be due to passive electrodiffusive fluxes of HCO₃⁻, H⁺, and/or OH⁻ occurring under very favorable electrical and chemical gradients (membrane voltage ~−60 mV, pHₒ 7.40, pHᵢ ~7.95). When in fact the electrical driving force was abolished by completely depolarizing the cells in 120 mM K⁺, we were still unable to measure any significant change in the pHᵢ recovery rate in 0.5 mM HCO₃⁻, 148 mM glucuronate medium. Therefore, it would appear that the vast proportion of this apparent recovery remains largely unexplained.

We acknowledge the expert technical assistance of William H. Miller and Jacquelyn T. Engle, and the secretarial skills of Annette Irving and Teri L. Becker. We are especially grateful to Dr. Paul De Weer for providing the computer programs and least-squares fits for data analysis and to Ronald W. Ratlaff and Milton F. Pfeiffer for their efforts in connection with the computer files, graphic displays, and illustrations. We also wish to thank Dr. Paul De Weer and Dr. Albert Roos for their helpful discussions while the work was in progress and for their comments on the manuscript.

This work was supported by the Veterans Administration and by NIH grant GM-38094.

Original version received 25 November 1988 and accepted version received 8 May 1990.

REFERENCES

