
A r t i c l e

The Rockefeller University Press  $30.00
J. Gen. Physiol. Vol. 141 No. 1  29–60
www.jgp.org/cgi/doi/10.1085/jgp.201210859 29

I N T R O D U C T I O N

Ion channels are pore-forming proteins that regulate 
(gate) the flux of selected ions (K+, Na+, Ca2+, Cl) across 
the cell membrane in response to a variety of external 
forces (environmental stimuli) that include membrane 
potential (V ), ligand chemical potential (), temperature 
(T), membrane tension, and light energy (Hille, 2001; 
Nagel et al., 2002). In many channels, gating is strongly 
influenced by a ring of accessory domains acting as  
efficient conveyers of thermal, mechanical, or chemical 
energy to the pore’s central gating apparatus. An essen-
tial source of mechanical energy for many ion channels 
is Q-V work. The product of Q (membrane-specific 
charge) and V (membrane potential) is one of several 
canonical force-displacement terms in the system en-
ergy. Using voltage-clamp techniques, it is possible to 
study charge movement in the channel regulatory ap-
paratus. This can be done by measuring Q directly, typi-
cally in the form of a “gating” current Ig = dQ /dt, which, 
when integrated, contributes a data point in the equilib-
rium Q-V curve. An indirect method of studying voltage 
gating and other means of environmental sensitivity is 
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to measure the conductance G, a specific marker of 
pore activation. Equilibrium curves other than the stan-
dard G-V and Q-V curves can be useful, for example G-T 
and G- (for a list of commonly used parameters that 
appear in this paper, please see Table 1).

The main objective when analyzing equilibrium data 
are to identify elements that respond to external forces, 
and to quantify their interactions with the catalytic  
unit, which in ion channels is the conducting pore. 
Quaternary descriptions of enzyme function have been 
useful in studying regulatory proteins—most notably 
hemoglobin, widely considered the poster child of pro-
tein allosteric theory. Modeling hemoglobin using  
sophisticated variants of the classical Monod–Wyman–
Changeux (MWC) equation (Monod et al., 1965) has 
achieved impressive insight into its allosteric machinery 
(Eaton et al., 2007). A K+ channel whose regulation, 
at a basic level, is formulaically similar to that of hemo-
globin (though mechanistically distinct), is the large-
conductance voltage- and Ca2+-dependent (BK) channel. 
The BK channel derives its voltage dependence from 
four voltage-sensing (J) domains located within the 
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30 Linkage analysis in ion channels

(MWC) model as a natural choice for allosteric regula-
tion of BK.

The relatively large number of regulatory domains 
(four voltage sensors and possibly eight or more Ca2+-
binding sites) generates a multitude of possible channel 
states, the bulk of which appear to be readily accessible 
through experimental application of V and [Ca2+]i. A 
landmark study by Horrigan and Aldrich (2002) firmly 
established the allosteric nature of the BK channel 

membrane electric field, and also to a small degree 
from the pore (L) itself. Calcium sensors (K) are situ-
ated beneath the membrane plane, where they form  
a structure known as the gating ring. With voltage  
and Ca2+ sensors each outnumbering the pore 4:1, a 
significant mechanical leverage can be exerted on  
the pore gate. Combining this with the observation  
that pore opening is effectively (though perhaps not  
strictly) a binary process, one is lead to the concerted 

Ta b le   1

Commonly used abbreviations and parameters

Abbreviation Definition

Kv Voltage-dependent K+ channel (for example, Shaker)

C, O Closed and open conducting states of the pore (L)

R, A Resting and activated states of the voltage sensor ( J)

F, B Free and bound ligand states of the Ca2+ sensor (K)

 System energy—equal to the chemical potential of the channel

U, H, G Other thermodynamic potentials (energy, enthalpy, Gibbs)

T, P, V,  Intensive variables (temperature, pressure, voltage, chemical potential)

S, V, Q, N Extensive variables (entropy, volume, charge, species number)

kT, RT Boltzmann or gas constant times temperature

i, I Ionic current (single channel, whole patch)

ig, Ig Gating current (single channel, whole patch)

g, G Conductance (single channel, whole patch)

G-V, Q-V Equilibrium curves as a function of V (conductance, charge)

g, q, n Averaged single-channel quantities (conductance, charge, ligand number)

Gmax, gmax Maximum conductance (single channel, whole patch)

Qmax Total gating charge displacement (whole patch)

N Number of channels in a patch

Z Channel partition function

ZK Z/K

 Particle potential—the transition energy of a particle

J, K, L, P Equilibrium constants for particles J, K, L, and P

B, C, D, E, F, G Allosteric (coupling) factors

H, G Particle transition energies (enthalpy, Gibbs energy)

q, n, S Particle displacements (gating charge, ligand number, entropy)

qT, nT Total displacement per channel (gating charge, ligand number)

WA Work function of the principal component A

FB External force activating a secondary component B

WL, Wq Specific work functions (pore opening, gating charge displacement)

WH[g] Conductance Hill energy (= WL)

WC[q] Electrical capacitance energy (= Wq)

VM Mean (also called “median”) voltage of activation (= WC[q]/qT)

V1/2 Half-activation voltage

m Mean (or “median”) ligand activity

Cq, CP Capacitance (electrical, heat)

fq Normalized gating charge capacitance (= Cq/N)

m Ramp speed (mV/ms) or slope of linkage plot asymptote (contextual)

N, Veq, gleak, Cpatch Patch parameters (channel number, equilibrium potential, leak conductance, patch capacitance)

fs, fc Sampling frequency, cutoff frequency

,  Rate constants (forward, backward)

PO Open probability (= G/Gmax)

qa Mean activation charge displacement (= kTd lnPO/dV)

B Boltzmann equation (= J/(1 + J), with J = exp(qB(V  V1/2)/kT))

H Hill equation (= KnH/(1 + KnH), where nH is the Hill coefficient

D
ow

nloaded from
 http://jgp.rupress.org/jgp/article-pdf/141/1/29/1791444/jgp_201210859.pdf by guest on 24 April 2024



� Sigg 31

whose function is to activate secondary components (B) 
that might interact with A. These secondary levers do 
not require a measurement of effort because the goal  
is to determine the interaction energy WAB and not 
the total energy of activating both components (= WA + 
WB + WAB). This is helpful because, in many instances, it 
is not possible to measure WB, but it is possible to acti-
vate components B through a lever operation. The  
lever operation can in principle be performed by any 
channel-modifying agent, for example, a mutation or a 
toxin. Here, however, we will consider only generalized 
forces FB such as voltage or calcium chemical potential 
as secondary agents, as these can be smoothly and quan-
titatively controlled in the laboratory.

Using a combination of lever pulls, the energy of  
interaction WAB between components A and B can be 
obtained by twice measuring WA (i.e., pulling the A lever), 
once with component B in the resting state (WA,B()) 
and a second time with component B in the activated 
state (WA,B(+)). The difference between these two energies 
yields WAB, the logic being that if A and B are allosteri-
cally linked, activating B will assist (or retard) activation 
A by the amount WAB. This form of linkage analysis can 
be concisely summarized by the expression WAB = BWA = 
BA, where the “lever operator” () is defined (using 
component A as an a example) by A() = ()A(+)  ()A(). 
In plain English, a lever operation takes the difference 
of the operand (the quantity in parentheses) evaluated 
at the extreme limits of a second quantity. The process 
of lever pulls is neatly represented by a four-state ther-
modynamic cycle, in which each corner represents a 
limiting energy state in the equation WAB = (A(+)B(+) + 
A()B()  A(+)B()  A()B(+)). In both pathways start-
ing in the resting state A()B() and ending in the fully 
activated state A(+)B(+), one leg constitutes the work func-
tion WA, whereas the other leg is defined by the lever 
operation B (see Fig. 2 B). The reciprocity principle 
demands that the alternative cycle, which uses WB and A 
as its legs, should yield the same interaction energy; in 
other words, WAB = WBA. Here we confine the discussion 
to pairwise interactions. More complicated cycles with 
eight or more states (see Sadovsky and Yifrach, 2007), 
such as those that describe the interaction WABC (in which 
the activation state of a third component C influences 
WAB), are not covered here but represent a straightfor-
ward extension of the theory.

The allosteric relationship between components A 
and B is established by plotting WA against FB, referred 
to here as a linkage plot. The typical appearance of a 
linkage plot is shown in Fig. 1. The work function WA 
rises steeply in the region of B activation, with a dis-
placement equal to WAB. If the principal component 
A is itself not sensitive to FB, the plot plateaus at the 
two extremes. Otherwise, the extreme behavior is char-
acterized by sloping asymptotic lines whose derivative  
m is the generalized displacement of A linked to FB 

through a wide range of kinetic and equilibrium mea-
surements, culminating in a model with nine interact-
ing gating domains or particles (one pore, four voltage 
sensors, and four Ca2+-binding sites). Since then, deriva-
tives of the Horrigan–Aldrich (HA) model containing 
an even greater number of gating particles have been 
proposed to account for various experimental findings 
(Zeng et al., 2005; Qian et al., 2006; Horrigan and Ma, 
2008; Sweet and Cox, 2008; Pantazis et al., 2010; Savalli 
et al., 2012).

This paper describes thermodynamic methods that 
can be used to characterize allosteric networks in ion 
channels. The theory proposed here has firm roots  
in the pioneering work by Jeffries Wyman (1964) on  
ligand-binding allosteric proteins. Wyman referred to 
interactions between liganded “protomers” or “particles” 
(regulatory units of proteins) as “linkage,” and argued 
on thermodynamic grounds that linkage must be recip-
rocal; that is, the energy WXY linking the activated state 
of a protomer Y to that of a neighboring protomer X 
equals the energy of the reverse interaction WYX. Link-
age theory has generally focused on interactions be-
tween ligand-binding protomers, which is reflected in a 
notational style that overlooks the existence of other en-
vironmental forces. Here, Wyman’s original theory is 
generalized for use with any external force through  
the means of a mathematical device referred to as the 
“particle potential” , which simply is the free energy 
of particle activation expressed as a sum of force- 
displacement canonical pairs, related to the particle’s 
equilibrium constant by K = exp(/kT). An important 
use of  is to derive the equilibrium curve of particle 
activation, which equals /, where  is the system 
energy. Armed with the partition function Z (a statisti-
cally weighted sum of channel states expressed as a poly-
nomial function of equilibrium constants and allosteric 
factors—the equivalent of Wyman’s binding polynomial), 
linkage relations between regulatory protomers are  
easily derived. This is a powerful and unifying concept 
that provides a framework for understanding the ther-
modynamics of multimodal, allosterically regulated pro-
teins such as BK.

A key variable in the current treatment is the “work 
function,” an energy specifically assigned to the princi-
pal component (A) of a linkage relation. The principal 
component may be a canonical displacement (for ex-
ample, total gating charge Q), in which case we speak 
of a “global” variable, or it could be a marker of pro-
tomer activation (for example, the pore open state), in 
which case we are dealing with a “local” variable (Di Cera, 
1990). The work function WA is formally defined as 
the change in system energy  required to reversibly 
activate A. It is as if one possessed an imaginary lever for 
this purpose and could measure the effort WA = A(+)  
A() required to very slowly change A from the resting 
to the activated state. One can also envision other levers 
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32 Linkage analysis in ion channels

of channels. Wq is derived by integrating Vdq over the 
saturating range of q given by [0, qT]. Changing the 
integrand from q to V yields Wq = qTVM, where VM = 
∫VfqdV is the mean value of V with respect to the capaci-
tance distribution fq = (dq/dV )/qT. Because the work 
function for q depends in part on the global “capacity” 
of the channel to store charge, it is referred to here as 
the “electrical capacitance” energy WC[q], which we de-
fine as WC[q] = Wq, again to conform to the positive 
sloping convention of the traditional Hill plot. The  
capacitance energy of other thermodynamic displace-
ments can be similarly defined. For example, Wn = nTM 
describes the reversible energy of ligand binding, where 
M is the mean value of the chemical potential  inte-
grated over the “binding capacity” dn/d (Di Cera et al., 
1988), and n is the ligand number.

The summed energy Wqn of interactions between volt-
age-sensing and Ca2+-sensing elements in the BK chan-
nel is equal to the expression Wq = qT VM, whose 
evaluation in practice involves measuring the shift in  
VM under limiting conditions of “zero” and “saturating” 
calcium concentration, denoted by () and (+). Later, 
it will be demonstrated how a slow voltage ramp can be 
used to elicit the capacitance Cq = dQ /dV, from which 
VM can be obtained. Wyman’s reciprocity principle as-
sures us that VWn = Wq, or more succinctly, that Wqn = 
Wnq. In other words, measuring the mean ligand activity 
M as a function of V could in principle be used to con-
firm the value of Wqn obtained from the  dependence of 
VM, provided one is able to measure Ca2+-binding curves.

Linkage plots of global work functions can generate 
sloping asymptotes resembling those of Hill plots, pro-
vided that at least one of the contributors to the capaci-
tance is activated by both principal and secondary 
forces. An example would be a Ca2+-binding site located 
a small electrical distance d inside the membrane poten-
tial. If the resulting charge movement 2d can be de-
tected as a component of the Q-V curve, plotting WC[q] 
versus  would demonstrate asymptotic slopes equal 
to n, the number of Ca2+ bound per site. However, in 
most models of BK, there is the assumption of strict mo-
dality separation between voltage and Ca2+ sensors, so 
that the extremes of the linkage plot are horizontal pla-
teaus. The absence of sloping asymptotes is a useful fea-
ture if one wants to economize on data collection, as 
only two measurements (WC[q],[] and WC[q],[+]) are re-
quired to measure Wqn = Wq.

With the two essential work functions, WH[g] and WC[q], 
one is able to obtain the three core interaction energies 
linking the L, J, and K protomers of the BK channel. 
This will be explicitly demonstrated for the well-known 
nine-particle HA model (Scheme 2 in this paper), but is 
also true for more complex models of BK, where J and 
K protomers may contain a multitude of internal inter-
actions (Scheme 3). The results from Monte Carlo sim-
ulation using patch-clamp conditions for an explicit 

(for example, if FB = V, then m = qA, the gating charge 
of A). There is a strong resemblance between the linkage 
plot and the Hill plot used to study cooperative binding 
in hemoglobin and other allosteric proteins. This is not 
accidental as we shall see, although the methods pre-
sented here focus on the limiting asymptotes of the plot 
rather than on the steeper middle portion, the slope of 
the latter used primarily as a measure of cooperativity 
related to the Hill coefficient (Hill, 1910; Yifrach, 2004).

To move the discussion beyond the pulling of imagi-
nary levers to the more practical realm, we must specify 
work functions that can be measured in the laboratory. 
In the BK channel, and in other voltage-dependent ion 
channels studied under voltage clamp, two such func-
tions stand out as being essential, based on their con-
nections to the equilibrium curves G-V and Q-V. The 
first of these relates to pore opening, for which G is a 
local marker. The work function for pore activation  
is, by definition, WL = L(+)  L(). It will be shown 
later that WL is derived from the G-V curve through 
WL = kT ln[G/(Gmax  G)]. Given the similarity of this 
formula to the traditional Hill plot of ligand binding 
(Wyman, 1964; Eaton et al., 2007), and also its relation-
ship to G, WL will be referred to as the “conductance 
Hill energy” WH[g]. Defining WH[g] as the negative value 
of WL generates positive asymptotic slopes character-
istic of the traditional Hill plot. Other markers such as 
fluorescent labels can be used to define additional local 
variable Hill functions, for example, WJ and WK, which 
are the work functions for voltage and Ca2+ sensor acti-
vation, respectively. The function ln used in “-analysis” 
of mutational effects on cooperativity (Chowdhury and 
Chanda, 2010) is precisely equal to WH[g] apart from a 
factor of kT.

The second essential work function is a global vari-
able obtained from the Q-V curve. It is the reversible 
work Wq of moving a channel’s gating charge q = Q /N, 
where Q is total measured charge, and N is the number 

Figure 1.  Typical linkage plot of a work function for component 
A in response to a secondary force B. The interaction energy be-
tween A and B is the height difference between the two dashed 
asymptotic lines. The slope of asymptotic lines is a displacement 
of component A related to the force B.
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transition events were randomly determined by assigning each 
particle i a waiting time di based on its state-dependent transition 
rate i. During constant-voltage segments of the simulation, or if 
the particle charge qi = 0, di was obtained from the formula 
lnrn/i, where rn is a uniform random number drawn between 
0 and 1 obtained with the long-period (>2 × 1018) random num-
ber generator of L’Ecuyer with Bays-Durham shuffle (Press et al., 
1992). During the ramp phase, the di of charged particles was 
obtained from the formula (2kT/mqi)ln[1(mqilnrn)/(2kToi)] 
(Sigg and Bezanilla, 1997), which reflects the nonstationary value 
of the forward and backward particle rate constants i and i, 
which are of the form oi exp(qiV/2kT) and oi exp(qiV/2kT), 
respectively. The method for determining i and i are given in 
the next section. The particle with the shortest di was allowed to 
transition, after which the simulation time was advanced by di. If 
between t and t + di there was a change in pulse protocol occur-
ring at t1, the simulation time reverted to t1, and the process was 
resumed for the new set of conditions. The gating current for 
each transition was computed as the filtered impulse response 
(cutoff frequency fc) using a Gaussian filter and discretized (sam-
pling frequency fs = 5fc) in such a way that the discrete integral 
of the response equaled the gating charge displacement qi (Sigg 
et. al., 1999). Because transition intervals were stored as floating-
point numbers, and discretization was performed in concert with 
filtering, multiple transitions could occur within the same sam-
pling time increment 1/fs without introducing error. The unitary 
ionic current i was generated as a sequence of filtered unitary 
impulses (alternating between areas 1 and +1) connected to 
each closing and opening event, which was then integrated into a 
telegraph signal and multiplied by the pore conductance gL and 
driving force (V  Veq). The value of the equilibrium potential 
Veq in ramp simulations was 50.0 ± 2.5 mV. Gaussian-distributed 
white random noise was added to each trace of 1,000 channels. 
The noise amplitude was adjusted so that, after digital filtering, 
the mean-square value of the resulting current (Inoise) was equal to 
the Nyquist value 4kTBg, where B is the low-pass bandwidth of a 
Gaussian filter (B ≈ 1.064 fc; see Crouzy and Sigworth, 1993), and 
the conductance g was made up of contributions from a constant 
“leak” conductance gleak, assumed to be 50.0 ± 2.5 pS (≈ 20 
Gohm1), and a fluctuating term NOgL, where NO was the number 
of open channels at a given time. Each simulated current trace 
(gating and ionic) contained the following terms:

	 I Ni Ni I mC g Vg noise patch leak= + + + + , 	

where Cpatch is the patch capacitance (= 3.00 ± 0.15 fC), and the 
ionic current i was set to zero when simulating gating currents. 
Perfect series resistance compensation was assumed. The param-
eters N, Veq, gleak, and Cpatch were randomly generated to within a 
range of ±5% of their stated values using a uniform random devi-
ate. This was done at the beginning of each experiment. The  
randomized values of these patch-specific parameters were not 
known at the time of analysis. In addition to ramp simulations, 
conventional square-pulse protocols were used to simulate charge-
per-channel experiments in which gating and ionic currents were 
generated for a 10-ms test (ON) pulse to 300 mV from a resting 
potential Vr = 300 mV, ending with a tail (OFF) pulse to 0 mV.

Kinetics of the 17-particle model
Although the emphasis of this paper is on equilibrium methods, 
kinetic parameters for the 17-particle model were required to per-
form ramp simulations. The chosen scheme was consistent with 
known macro-kinetics of the channel while preserving equilibrium 
properties. Time constants of decay  for both ionic and gating 
currents in BK were obtained from Horrigan and Aldrich (2002). 
In their study, maximum value max of the voltage-sensor decay 
time, estimated from the  versus V plot of the rapid component 

model containing 17 particles (Scheme 4) will be ana-
lyzed to help determine the feasibility of performing 
linkage analysis on BK channels in the laboratory. A slow 
voltage-ramp protocol was used for the simulated ex-
periments, with the advantage over conventional step-
pulse protocols that only single sweeps are needed to 
generate “quasi-equilibrium” Q-V or G-V curves.

Several issues arise when considering linkage analysis 
in ion channels, a fair number of which will be discussed 
in this paper. For example, how do local work functions 
behave when there are multiple copies of the particle of 
interest, particularly if the copies self-interact? This will 
be addressed when we consider a multiple interacting 
five-particle model (Scheme 1), and again for a more 
complex 20-state particle (Scheme 5) in which binary 
conductance is theorized to be the result of strong pore 
subunit interactions. A somewhat speculative scenario is 
when coupling energies themselves are functions of  
external forces. This leads to distortions in the linkage 
plots that will be explored in the context of the 17- 
particle model. A third question speaks to the appropri-
ateness of thermodynamic methods for channels other 
than BK. Is linkage analysis appropriate for use in all K+ 
channels? The answer is probably not. Members of the 
Kv class or voltage-dependent K+ channels are likely not 
amenable to linkage analysis of the voltage sensor–pore 
interaction, presumably because large interaction ener-
gies reduce the accessibility of most open-state config-
urations, a statement that is compatible with the current 
view that the open state of the Shaker K+ channel can 
be visited only if all four voltage sensors are activated 
(Schoppa and Sigworth, 1998; Ledwell and Aldrich, 
1999; Horn et al., 2000; Gagnon and Bezanilla, 2009). 
However, it is likely that other allosterically regulated 
channels possess a more accessible configurational space. 
An interesting example that will be briefly explored is 
the temperature sensitivity of a class of transient recep-
tor potential (TRP) channels.

M A T E R I A L S  A N D  M E T H O D S

Data simulations
Q-V and G-V curves for the 17-particle model (Scheme 3) were 
computed from particle activation curves (Eqs. 39a–c) using the 
modeling program Berkeley Madonna. Monte Carlo patch-clamp 
simulations of Scheme 3 kinetics were performed using custom 
software written in C. Each Monte Carlo experiment consisted of 
100 traces of summed currents from n = 1,000 ± 50 channels as 
well as contributions from thermal noise and membrane-based 
currents (leak and capacitance). At any time t in the simulation, 
the state of the channel was represented by a bitwise array con-
taining the activation states (0 for resting and 1 for activated) of 
the 17 regulatory particles. All gating particles were in their rest-
ing state at the beginning of the voltage protocol (t = 0). After 
allowing the system to equilibrate during a 50-ms constant-voltage 
prepulse at 400 mV, the voltage was slowly ramped with a speed 
m = 1 mV/ms to an endpoint of 300 mV, ending with a 50-ms 
constant-voltage postpulse also at 300 mV. Intervals  between 
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R E S U L T S

Thermodynamics
We consider a patch-clamp experiment measuring N 
channels at fixed temperature and pressure. The bath 
and membrane contain several buffered or reservoir 
species (divalent ions, H+, water, lipids) and additional 
species found in fixed numbers (the channel, other an-
cillary proteins, unbuffered ligands). The fundamental 
equation of thermodynamics for this system is:

	 dU TdS PdV VdQ dN dNb b b f f f= + + +– ,Σ Σµ µ 	  (1)

where U is energy, T is temperature, S is entropy, P is 
pressure, V (extensive) is volume, V (intensive) is volt-
age, Q is charge, and b and f are the chemical poten-
tials of buffered and fixed-numbered species present in 
numbers Nb and Nf. There may be other mechanical 
terms not included in this equation, such as those re-
lated to membrane tension, which find use in the study 
of stretch-activated channels (Markin and Sachs, 2004). 
The chemical species are additionally divided by what 
side of the membrane (intracellular or extracellular) 
they inhabit.

We are interested in a modified Gibbs energy, ob-
tained by applying Legendre transforms to all controlled 
variables, including buffered species, namely, G[V,{b}] = 
U  ST + PV  QV  bbNb (notation adapted from 
Alberty, 2002). Integrating Eq. 1 at constant values of 
the intensive variables, we obtain G[V,{b}] = ff Nf, indi-
cating that the free energy is a function of fixed-numbered 
species only. Assuming that the only fixed-numbered 
species of interest is the BK channel, we obtain G[V,{b}] = 
NBK. Following Wyman (1975), we equate the system 
energy  with BK. Writing the Gibbs–Duhem equation 
for Eq. 1 as SdT + VdP  QdV  bNbdb  Nd = 0 
and solving for d, we obtain:

	 d sdT vdP qdV n db b bΦ Σ= + – – – ,µ 	  (2)

where previously extensive variables are now written in 
lower case to indicate that they have been divided by  
N and made intensive. As a consequence, Eq. 2 contains 
only intensive variables. Assuming constant T and P, and 
allowing only one of the buffered chemical species to 
vary (internal Ca2+ in the case of BK), we simplify Eq. 9 
to derive the system equation for BK, placing angle 
brackets around displacement variables q and n to indi-
cate averaging:

	 d q dV n dΦ = − − µ. 	  (3)

In Eq. 3, the Ca2+ chemical potential  =  + kT lnaCa 
is a function of internal calcium activity aCa (in practice, 
assumed to be [Ca2+]i, the molar concentration) in units 
of micromoles/liter (µM). The standard chemical po-
tential  can be made zero by choosing the reference 
concentration to be 1.0 µM.

of gating current, was 5 ms, whereas ionic current kinetics, 
reflecting pore activation, demonstrated a maximum max in the 
decay time of 0.05 ms. Both voltage-sensor particles in Scheme 
3 were assigned the same decay time. Ca2+ binding was assumed to 
have the same max as voltage-sensor activation. The condition of 
maximum  = ( + )1 was obtained when forward () and back-
ward () particle activation rates were both equal to (2max)1. To 
satisfy equilibrium and kinetic requirements, particle rate con-
stant were computed according to i = (2max)1(Zi(+)/Zi())1/2 and 
i = (2max)1(Zi()/Zi(+))1/2, where Zi() and Zi(+) are the limiting 
channel partition functions corresponding to the resting and acti-
vated states of the ith particle, obtained during ramp simulation from 
a look-up table continuously updated to account for changes in V.

Data analysis
Simulated experiments consisted of 100 traces each of ionic and 
gating currents from n = 1,000 ± 50 channels, taken at [Ca2+]i = 
103 µM and 103 µM. Estimates for gleak and Cpatch were obtained by 
analyzing short segments (2–40 ms) of current before (I()) and 
after (I(+)) the beginning of the test pulse (t1). For a square pulse 
of height V, gleak = (I(+)  I())/V, where the current was aver-
aged over each segment. In ramp experiments, initial estimates of 
gleak and Cpatch were simultaneously obtained by fitting I to the fol-
lowing function: I (t < t1) = I(); I (t ≥ t1) = I() + mCpatch + gleak(V(t) 
 Vr). Fits were obtained using the solver application in Excel 
(Microsoft). The values of gleak and Cpatch, in addition to Veq (in ionic 
current experiments), were further refined through manual ad-
justment and fitting of asymptotes to achieve satisfactory shapes 
for both the Q-V curve = ∫(Nig/m)dV and the conductance Hill 
plot WH[g] = kT ln(G/(Gmax  G), where G = I/(V  Veq). To reduce 
the deleterious effects of Nyquist current noise on Q-V and WH[g] 
plots, post-filtering of currents was performed after initial correc-
tion for gleak and Cpatch with a symmetric Gaussian filter to an ad-
justed cutoff frequency of 0.1 kHz. After adjusting baselines for 
the ramp-generated gating currents as above, the value of VM was 
estimated from the following integral (see Eq. 29):

	 V
Vi dV

i dVM
g

g

= ∫
∫

. 	

Integration was performed using Riemann sums, which was  
adequate for the sampling rate used (V = 0.2 mV). In WH[g] versus 
V plots, straight lines were fit to the positive and negative asymp-
totes, and energies of interaction were obtained from the height 
differences. This was done for both [Ca2+]i = 103 and 103 µM. 
The pore gating charge qL was obtained from the slope of the 
lower (negative) V asymptote in the high Ca2+ plot. In “charge-
per-channel” experiments, the time-dependent variance Var(I ) of 
the ionic current was plotted against I and fitted to the equation 
Var(I) = iI  I 2/N (Sigworth, 1980) for both test and tail currents, 
with N averaged over the two estimates. The total gating charge 
qT was obtained from the integrated positive gating current Q = 
∫NigdV divided by the measured n value.

Parameter estimates in the form of mean ± SEM (SEM) were 
obtained from 10 experiments in each set of conditions. Two-
tailed Student’s t tests were used to assign p-values to the devia-
tion of estimates from their expected values. Differences with 
p-values of <0.05 were considered statistically significant.

Online supplemental material
The partition function and linkage relationships for Scheme 3 
(see Eqs. 37a–d) are derived. The use of linkage analysis to dis-
crimination between mechanisms of phenotype reversal in chi-
meric temperature-sensing TRP channels is illustrated in Fig. S1. 
Supplemental text and Figs. S1 and S2 are available at http://www 
.jgp.org/cgi/content/full/jgp.201210859/DC1.
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combination of j, k, and l. The partition function Z can 
be converted into polynomial form:

	 Z Ll
l

n n n
l=

=
∑ Θ j k

j k

j k
j k

J K, ,
, ,

, ,

,
0

l
	  (7)

where the particle equilibrium constants J, K, and L are 
related to their respective particle potentials through 
“local bridge” equations (compare with Eq. 4) J = 
kT lnJ, K = kT lnK, and L = kT lnL. From these 
relations and the distribution of states provided by Eq. 7, 
a statistical mechanical version of the system equation 
(Eq. 3) can be derived:

	 kTd Z d d l d Lln = − − −j jK Jη η η , 	  (8)

where  j  = /J = lnZ/lnJ is the mean number of 
activated J particles, and the other activation numbers 
are similarly given by k = /K = lnZ/lnK and l  = 
/L = lnZ/lnL. The activation numbers establish 
a link between local and global descriptions of the sys-
tem. For example, we can derive the mean gating charge 
displacement q = (/V ) as a function of particle 
transition charges by applying the chain rule:

	 q
V V VL

L= −
∂
∂

∂

∂








 −

∂
∂

∂
∂







 −

∂
∂

∂
∂









Φ Φ Φ
η

η

η
η

η
η

µ µ µJ

J

K

K . 	 (9)

Evaluating the derivatives on the right side with the 
help of Eq. 6 yields:

	 q q q l qL= + +j kJ K∆ ∆ ∆ . 	  (10)

An analogous expression, the mean number of bound 
calcium ions, is:

	 n n n l nL= + +j kJ K∆ ∆ ∆ . 	  (11)

The activation curves  j , k, and l  are easily derived 
from the polynomial form of the partition function, Eq. 7.

Defining the terms “protomer” and “particle”
The words “protomer” and “particle,” referring to the 
basic building blocks of allosteric networks, have been 
used almost interchangeably so far in this paper. How-
ever, it is useful to propose a distinction between the 
two terms to clarify the role of complex domains with 
multiple activation states. The word “particle” will here-
after refer to a single activated protomer state. In the 
case of a two-state protomer, such as the pore with 

We assume that linkage relations between canonical 
pairs q-V and n- are entirely mediated by the channel 
protein, or if external sources of linkage exist, such as 
surface charge effects (Moczydlowski et al., 1985), they 
can be corrected. This assumption is formalized by use 
of the “bridge” equation,

	 Φ = −kT Zln , 	  (4)

where Z is the channel-specific partition function. Here, 
kT has its usual thermodynamic significance (= 25.3 
meV at 20°C).1 The partition function, or weighted sum 
of states, is expressed in terms of the channel’s gating 
particles as follows:

	 Z
l

kTl
l

n n n
L

l

=
− + +( )











=

∑ Θ j k
j k

J K
j k j k

, ,
, ,

, ,

exp ,
0

η η η
	  (5)

where the weights  are functions of combinatorial and 
allosteric factors, and integers j, k, and l are the activa-
tion numbers for protomers J, K, and L, ranging from 
0 to a maximum of 4 (nJ, nK) or 1 (nL). The variables 
pertaining to the voltage sensor (= J) and gating ring 
(= K) are written in bold type to suggest a conforma-
tional complexity requiring composite variables, whereas 
the pore (L) for now has only one activated state. To 
keep the equations simple, there will be an implied 
summation when expressions of energies and displace-
ments of composite (bolded) variables are considered 
(for example, /J = /J1 + /J 2 +...), and 
a product with composite allosteric factors (for example 
J = J1 J2...).

A basic premise of allosteric theory is that protomers 
behave as quasi-independent units, with a given pro-
tomer X possessing a “system” energy X that is defined 
as the energy landscape of activation experienced by  
X when all other protomers are at rest. Defining the 
“particle potential” X as the change in X required to 
activate the X protomer (X ≡ XX), and evaluating X 
at constant T, P, V (voltage), and , we obtain:

	 η µX X X XG q V n= − −∆ ∆ ∆ , 	  (6)

where qX and nX are charge and Ca2+ displacements 
of activation, and GX = (U/N)X  sXT + vXP is the 
Gibbs energy of particle activation (not to be confused 
with the macroscopic conductance G and an allosteric 
factor by the same name). The specific form of Eq. 6  
in models of BK can be derived from a “truth table” 
(Table 2), which lists properties of individual particles. 
For example, L = GX  qLV, because the pore is as-
sumed to be purely voltage dependent.

An “accessible” allosteric system is defined as one for 
which the weights j,k,l in Eq. 5 are nonzero for any 

Ta b le   2

Modality truth table for the BK channel

Force Displacement L(/+) J(/+) K(/+)

V(/+) q(/+) (C/O) (R/A) —

(/+) n(/+) — — (F/B)
1100 meV = 2.30 kcal/mol = 9.65 kJ/mol.
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conclude that in the concerted activating pore, the 
equilibrium constant is L = P 4.

Incorporating a composite protomer into an alloste-
ric scheme is implemented by enabling its constituent 
particles, whether real or virtual, to interact with other 
particles. Each configurational state becomes a term 
within the partition function of Eq. 7, from which equi-
librium curves, such as those described by Eqs. 10 and 
11, can be derived. In this paper, we will only consider 
networks composed of simple two-state protomers be-
cause this is traditionally what is used to model BK.

Contracted partition functions (CPFs)
The concept of limiting states, in which the channel 
adopts a constrained configuration or sub-scheme, ei-
ther through the use of a mathematical device such as 
Hill transformation or with the application of an exter-
nal force, was introduced earlier in the discussion of 
thermodynamic cycles, and has been instrumental in 
the understanding of thermodynamic models of BK in 
relation to experimental data (Rothberg and Magleby, 
1999; Horrigan and Aldrich, 2002). To illustrate the 
method, we examine pore activation, which when visu-
alized in single-channel recordings, appears as a binary 
stochastic sequence resembling a telegraph signal, with 
abrupt transitions occurring between closed (C) and 
open (O) states. The partition function for this two-
state process is given by:

	 Z Z LZC O= +4 4 . 	  (12)

The first and second terms on the right side of Eq. 12 
are “limiting” partition functions (LPFs) for the closed 
and open sub-schemes of the channel, respectively, and 
can be symbolized by ZL() and ZL(+). Generally speak-
ing, an LPF can be reduced by dividing through com-
mon factors to a “contracted” partition function (CPF; 
see Di Cera, 1990). CPFs differ from LPFs in that their 
energetic point of reference is not necessarily the least 
activated state of the channel. The CPFs in Eq. 12 are ZC 
and ZO, which represent subunit configuration states 
consistent with the closed and open states of the pore. 
They are raised to the fourth power in Eq. 12 because 
we assume for now that subunits do not self-interact.

A useful feature of CPFs is that suitably chosen ratios 
yield expectation values (distribution-based averages) 
of coupling factors. To demonstrate this, consider the 
following truncated model of BK consisting of a single 
(voltage-dependent) pore particle (L) interacting with 
four Ca2+-sensing K particles (Scheme 1). The equilib-
rium scheme for this five-particle model—which, inci-
dentally, is mathematically equivalent to the original 
MWC model (Monod et al., 1965; Cox et al., 1997)—is, 
using “linkage notation” (see Table 3 and Appendix):

	 	 (SCHEME 1)

partition function Z = 1 + L, the terms “protomer” and 
“particle” are synonymous. However, a composite pro-
tomeric unit possesses more than one activated state. 
This may be because it undergoes successive transi-
tions during activation, as is thought to be true for the 
S4 segment in Kv channels (Schoppa and Sigworth, 
1998; Gamal El-Din et al., 2010; Henrion, et al., 2012), 
in which case the partition function is written Z = 1 + J1 + 
J2 +...; or it is composed of multiple interacting two-
state particles, in which case the partition function is 
(for two particles) Z = (1 + J1) + J2(1 + J1G), with G as a 
coupling factor. In both cases, the particles are con-
nected to the equilibrium constants J1, J2, etc., and can 
exist either in the real sense (representing a physical 
structure or binding site) or virtual sense (a state in a 
series of activated states). Note that for very large G 
and small J2, the second class of partition function has 
the same form as the first. Thus, the sequentially acti-
vating protomer can be mathematically viewed as a 
special case of the interacting particle protomer. Re-
gardless of the form of the partition function, particle 
activation numbers can always be derived from Z using 
j1 = lnZ/lnJ1, j2 = lnZ/lnJ2, etc.

Just as one (composite) protomer can be made up of 
multiple particles, the converse may also be true, in 
which multiple protomers interact so strongly as to acti-
vate in concert, thus representing a single particle. Such 
a scenario explains binary conductance in a K+ channel 
pore constructed from four identical P subunits. The 
corresponding partition function is Z = 1 + P 4 from 
which the classical Hill equation (Hill, 1910) can be de-
rived as H = (1/4)lnZ/lnP = P 4/(1 + P 4). The two-state 
partition function Z = 1 + L generates the Boltzmann 
equation, B = lnZ/lnL = L/(1 + L), from which we 

Ta b le   3

Rules for extracting Z from linkage diagrams

Expression Interpretation

(...) CPF unit

(K) CPF = 1 + K

(KE) CPF = 1 + KE

( J)(K) CPF = (1 + J)(1 + K)

( ) ( )A  B
K →








CPF = (CPFA) + K(CPFB)

( ) ( ) ( )A  B  C
K K →  →











2 CPF = (CPFA) + K(CPFB) + 
K2(CPFC)

K F[ ]( ) CPF = f(K1, K2, K3,...F1, F2, F3,...)

K F[ ] ( )
( ) −

CPF() = 1

K F[ ] ( )
( ) +

CPF(+) = K1K2K3…F1F2F3…

J and K are particle equilibrium constants; C and F are allosteric factors; 
A, B, and C represent limiting states; and variables in bold type (K, F ) 
represent composite particles.
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From the discussion in the previous section, we know 
that WH[g] + L varies in sigmoid fashion from 0 to 4WC 
in the range [(), (+)]. Applying the lever operator  
to Eq. 15, we therefore obtain the following practical 
formula for the total interaction energy between L and 
four K particles, seen in the energy Hill plot as the rise 
in the sigmoidal component:

	 µ η∆ ∆W WH g L C[ ] .+( ) = −4 	  (16)

It should be noted that, because the pore in Scheme 1 
is not intrinsically Ca2+ dependent, its particle potential 
L = GL  qLV is independent of ; i.e., L = 0. 
Under these circumstances, L can be left out of Eq. 16.

Plotting WH[g] versus V instead of  yields a straight 
line given by WH[g] = L. This is the Hill plot of the 
pore particle in the absence of interactions with other 
voltage sensors. Under conditions of “zero” Ca2+, sym-
bolized by (), the line has slope m = qL and V-inter-
cept VL,() = GL/qL, consistent with L = qL(V  
VL,()). If we increase Ca2+ to saturating levels, then 
m is unchanged but the V-intercept VL,(+) = (GL + 
4WC)/qL is left-shifted in the setting of positive allo-
steric interaction (WC < 0). This single-particle behav-
ior is the source of sloping asymptotes in Hill plots.

The ligand-binding Hill plot for Scheme 1
The conductance Hill plot (Eq. 14) was derived from 
the equilibrium curve (G-V) of a single particle L. Sup-
pose we could measure Ca2+ binding in Scheme 1 through 
an assay in which the signal B increments by b each time 
a Ca2+ ion is bound, and we would like to construct an 
energy Hill plot around the four K particles. Would it 
be correct to use the following analogue of Eq. 14:

	 W kT
B

B BH b[ ]
max

ln ,=
−









 	  (17)

where B = Nbk (maximum value: Bmax = 4Nb)? The 
answer is yes, supported by the everyday use of conven-
tional Hill plots in ligand-binding assays. To demonstrate 
this explicitly in the case of Scheme 1, one could evalu-
ate k = lnZ/lnK using Eq. 12, but it is more instruc-
tive to parse Z differently by expanding it in powers of 
K, using the following alternative version of the Scheme 
1 linkage diagram:
		

L
K

LC
K

LC
K

LC
K

LC( ) →  →  →  →        ( ) ( ) ( ) ( )
2

2
3

3
4

4

 

(SCHEME 1, alternative form)

The corresponding partition function (equivalent to 
Eq. 12) is given by:

	 Z Z Z K Z K Z K Z K= + + + +( ) ( ) ( ) ( ) ( ) ,0  4  6  41 2
2

3
3

4
4 	  (18)

In Scheme 1, pore opening (L) simultaneously in-
creases all four equilibrium constants K by a factor of C. 
The partition function for Scheme 1 is given by Eq. 12, 
where ZC = (1 + K), and ZO = (1 + KC). The ratio of the 
two CPFs yields the expectation value of C derived from 
the distribution of K particle states:

	 Z
Z

KC
K

CO

C
K=

+
+







 =

1
1

. 	  (13)

The Ca2+ dependence in Eq. 13 arises from the equi-
librium constant K = exp(K/kT) = exp[(GK + 
nK)/kT]. Recalling that [Ca2+]i = exp(/kT), this can 
be rearranged to read K = ([Ca2+]i/Kd)nK, where Kd = 
exp(GK/nKkT) is the intrinsic disassociation constant 
of the K-binding site. If a single ion is bound during 
activation, then nK = 1, and we obtain the usual expres-
sion K = [Ca2+]i/Kd. Because K grows monotonically 
with increasing , it is correct to substitute C  for C K 
on the right side of Eq. 13. The value of C  changes 
smoothly from 1 to C when varying  over the saturating 
range [(), (+)]. Switching to energy units, we con-
clude that kT lnC varies from 0 to WC.

The preceding example is representative of the cor-
respondence between the sigmoidal component of a 
linkage plot and the logarithm of a CPF ratio. The abil-
ity to measure a linkage plot in practice is therefore con-
tingent upon finding a work function that contains the 
desired CPF ratio. This is the subject of the remainder of 
the Results section, where work functions based on the 
G-V and Q-V curves are used to analyze linkage in a se-
ries of increasingly complex models of BK.

The conductance Hill energy WH[g]

The Hill energy is defined as the work function of a sin-
gle particle. It was stated in the Introduction that the pore-
specific Hill energy WL can be derived from the G-V 
curve. This will now be proved. Starting with the defini-
tion WL = L(+)  L(), we invoke the bridge equation 
(Eq. 4) to obtain WL = kTlnZL(+)/ZL(). As discussed in 
the preceding section, the partition function can be 
written as the sum of two LPFs: Z = ZL() + ZL(+). Recog-
nizing that each term in Z is a state probability after nor-
malizing with Z, we write the probability PO of channel 
opening as G/Gmax = ZL(+)/Z. Combining the above equa-
tions, and recalling that the conductance Hill energy 
was defined as WH[g] = WL, we obtain, as advertised, the 
following Hill equation:

	 W kT
G

G GH g[ ]
max

ln .=
−









 	  (14)

In channels possessing a binary pore and noninteract-
ing subunits, Z is given by Eq. 12, from which we derive 
the following statistical mechanical version of Eq. 14 
(see also Chowdhury and Chanda, 2010):

	 W kT
Z
ZH g

O

C
L[ ] ln .=









 −4 η 	  (15)
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gating, it is useful to consider the existence of self- 
interacting K particles, a scenario that can be described 
by the “square” variant of the Koshland, Némethy, and 
Filmer mechanism of allosterism (Koshland et al., 1966). 
We postulate a modification of Eq. 18, in which the 
CPFs Z(k) are multiplied by successive products of 
interaction factors Bk. As a result, the original Z(k) are 
changed to B0Z(0), B0B1Z(1), B0B1B2Z(2), and so forth. 
The zeroth factor B0 can be set to unity without loss 
of generality. Substituting these modified CPFs into 
Eq. 21, we see that the Koshland, Némethy, and Filmer 
scheme adds energies of interaction kT lnB1 and kT ln
B4 to Eqs. 21a and 21b, respectively. Therefore, in eval-
uating WH[b] for Scheme 1, we obtain—in addition 
to the K–L interaction energy WC and the divergent 
term K = nK((+)  ())—a third, self-interaction 
term kT ln(B4/B1), representing the difference in the 
work needed to activate the first and last K particles.

Summary of energy Hill plot analysis
Summarizing the results so far, we conclude that energy 
Hill analysis yields three distinct energies: a diverging 
term () related to particle displacement, a hetero
logous term comprised of the interaction energies  
between the principal and secondary particles, and a 
homologous term describing self-interaction among 
copies of the principal particle. The first of these terms 
can always be distinguished from the other two through 
its asymptotic behavior, whereas the heterologous and 
homologous interaction terms combine to generate the 
sigmoidal component of the Hill plot (Fig. 1). Note that, 
in global linkage analysis, described shortly, the self-
interaction term is a constant of the capacitance work 
function, and does not contribute to the linkage energy.

In principle, one can systematically perform Hill plot 
analysis with markers for each type of particle in a regula-
tory network, thereby constructing a complete allosteric 
map of the protein (see Fig. 11). The problem of opti-
mizing network parameters (interaction energies and 
particle displacements) from such a dataset in the face of 
incomplete or noisy data will not be dealt with here, ex-
cept to say that in rare cases the solution may not be com-
pletely constrained, even under ideal conditions. In a 
unimodal system (responsive to a single external force), 
with multiple copies of each particle species, it may not 
be possible to distinguish between homologous and het-
erologous coupling energies, even when taking advan-
tage of reciprocal relations. In such cases, which will not 
be considered further here, reciprocal Hill relations be-
tween two particle species yield two linkage equations 
(one for each species) and three unknowns (two self- 
interaction energies and one allosteric energy).

Scheme 2 (the HA model)
Having just derived several linkage relations for Scheme 1, 
we now acknowledge its inadequacy as a model for BK. 

where the weights Z(k) = (1 + LC k) are CPFs correspond-
ing to integer steps in K activation (k = 0...4). Defining 
ZK = Z/K, we derive from Eq. 17 the following:

	 W kT
KZ
Z ZH b
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K
[ ] ln .=

−










4
	  (19)

Evaluating Eq. 19 with respect to Eq. 18, we obtain the 
four-particle analogue to Eq. 15:
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It is possible to regain from Eq. 20 the simple binary 
ratio of CPFs that made it possible to extract the value 
of 4WC from Eq. 15, by noting that the log quantity 
in parentheses converges to binary CPF pairs for either 
K→0 or K→ (corresponding to the limiting conditions 
() and (+)), yielding:

	 W kT
Z

ZH b K[ ] ( )
( )

( )

ln ,µ η− =








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	  (21a)
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	  (21b)

We can best understand Eqs. 21a and 21b by recog-
nizing that under limiting conditions, only one K parti-
cle (the first or last in the sequence) is statistically able 
to activate at a time, thus recapitulating the single-parti-
cle Hill plot. Applying the voltage lever operation V to 
either equation yields the anticipated value of WC 
(however, notice the absence of the factor 4 compared 
with Eq. 16). Because the particle potential K = GK  
nK is a linear function of , the plot of WH[b] versus 
 demonstrates sloping asymptotes (m = nK), as illus-
trated in Fig. 1 (substituting WH[b] for WA, and  for FB). 
Assuming nK = 1, the expressions for the  intercepts 
of the two asymptotic lines are K,() = GK and K,(+) = 
GK + WC, from which the disassociation constant 
Kd is obtained through Kd = exp(K/kT). We see that, 
stemming from linkage with the pore, there are two val-
ues for Kd (Xia et al., 2002), one for the un-liganded 
(free) state and the other for the bound state (Kd value 
left-shifted for the bound state if WC < 0).

Interacting K particles in Scheme 1
Thus far, we have assumed that each K particle is un-
aware of the state of the other three K particles except 
as inferred from the activation state of the pore. In re-
ality, there is extensive intersubunit contact between 
Ca2+-binding domains that make up the BK gating ring 
(Yuan et al., 2010). Despite evidence (Qian et al., 2006) 
that intrasubunit interactions are more relevant than 
intersubunit interactions for the regulation of pore 
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where it is assumed that E is constant. Eq. 22b corre-
sponds to the sub-scheme in which the voltage-sensor J 
is maintained (fixed) in an extreme position, allowing 
K–L linkage to be evaluated, whereas Eq. 22c describes 
J–L linkage with K fixed. Recognizing from Table 2  
that, for BK, J↔V and K↔, we can apply the re-
spective lever operators to Eq. 15, yielding the following 
linkage equations:

	 µ ∆ ∆W WH g V C[ ] ±( ) = −4 , 	  (23a)

	 V
H g L DW W∆ ∆( ) .[ ] + = −±( )η µ 4 	  (23b)

In reality, the majority of gating charge movement in 
BK is thought to occur in specialized voltage sensors (J), 
as indicated by the observation that the Q-V curve is 
variably steeper and left-shifted compared with the G-V 
curve (Horrigan and Aldrich, 2002). Adding an addi-
tional four J particles, one per subunit, to Scheme 1 
generates the nine-particle HA model, which we refer 
to as Scheme 2 (Fig. 2 A). This is represented by the fol-
lowing linkage diagram (one of six possible diagrams 
for Scheme 2):

	 	

(SCHEME 2)

We see that in upgrading from Scheme 1 to Scheme 2, 
we have increased the number of allosteric interac-
tions from one (C) to three (C, D, and E). Specifically, 
pore opening (L) increases the equilibrium constants 
J and K by factors of C and D, respectively, and J particle 
activation increases the equilibrium constant K by a fac-
tor of E.

The partition function for Scheme 2 is again de-
scribed by Eq. 12, but the CPFs ZC and ZO, derived from 
the parenthesized contents in the linkage diagram, are 
now functions of J and K (Table 4). A single polynomial 
function f1 describes both CPFs: ZC = f1(J, K, E) and ZO = 
f1(JD, KC, E). Depending on whether J or K is varied, the 
CPF ratio ZO/ZC can be interpreted as an expectation 
value for either D or C. In analogy to Eq. 13, we have:

Figure 2.  The HA model (Scheme 2). (A) Cartoon representation of the model with the central pore (L) and one of the four subunits 
highlighted. Ca2+-binding K particles are differentiated from the voltage-dependent J and L particles through the use of circles with 
dashed lines. Allosteric interactions are labeled C, D, and E. (B) Five linkage cycles generated from the work functions WC[q] and WH[g] 
and lever operators V and  applied to Scheme 2. Subunit cartoons are the same as in A, except that shaded circles indicate activated 
states. The plot is dived into four quadrants defined by limiting values of V and . The central cycle corresponds to Q-V–based global 
analysis, mathematically expressed as WC[q]. The remaining four cycles are variations of local analysis derived from the G-V curve, given 
by WH[g]V(±) and (VWH[g] + L)(±).

Ta b le   4

First-order CPFs (Scheme 2): Pore states (L)

LPF CPF

ZL() = ZC
4 ZC = (1 + K) + J(1 + KE)

ZL(+) = LZO
4 ZO = (1 + KC) + JD(1 + KCE )
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40 Linkage analysis in ion channels

function, also enables one to measure WE, as demon-
strated shortly using a J -based method.

A third and final order of parsing generates CPFs for 
the eight permutations of (L, J, K) activation states in 
Scheme 2 (Table 7). In the absence of a fourth regula-
tory particle added to Scheme 2, these third-order CPFs 
all equal 1. However, the corresponding LPFs are loga-
rithmically related to the energies of the terminal states, 
and when entered into a linkage cycle, they provide the 
correct interaction energies. For example, to determine 
WE, one could consider the following activation cycle 
in which J and K are principal and secondary activators, 
and L is maintained in either the closed or open state:

		   (25)

 Although not helpful in determining the intermedi-
ate points in a linkage plot, the fully parsed states repre-
sent the eight “corners” of the five linkage cycles 
generated by the G-V and Q-V curves in Fig. 2 B. Four of 
these cycles have already been characterized in the 
form of Eqs. 23a and 23b. The fifth cycle, shown in the 
center of Fig. 2 B, measures the interaction energy be-
tween charge-carrying and Ca2+-binding elements, and 
is described next.

The electrical capacitance energy WC[q]

We recall that the electrical capacitance energy WC[q] is 
the work function related to the Q-V curve. It is defined 
as the negative work Wq of displacing total gating 
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We should note the somewhat subtle distinction 
(apart from the superfluous L term) between Eq. 16 
(Scheme 1) and Eq. 23a (Scheme 2). The latter speci-
fies that voltage be held either at V() or V(+), lest the 
mean activation state of voltage-dependent J particles 
influence the evaluation of L–K coupling through sec-
ondary linkage. We should note that secondary linkage 
occurs only if J is simultaneously coupled to both L  
and K particles, i.e., if both WD and WE are nonzero. 
Otherwise, J could be viewed as merely an accessory 
component of either the pore or the Ca2+ sensor.

Eqs. 23a and 23b describe how two out of the three 
allosteric factors in Scheme 2 (C and D) can be derived 
from Hill transformation of the G-V plot. The third  
coupling factor, E, is inaccessible to conductance Hill 
analysis because it contributes equally to ZC and ZO 
(see Eq. 22a and Table 4). Therefore, E must be deter-
mined from the Q-V plot. But before discussing global 
linkage analysis, we must first finish dissecting the 
Scheme 2 partition function.

Higher-order parsing of the Scheme 2 partition function
It is useful to subdivide (parse) the Scheme 2 CPFs ZC 
and ZO with regard to the resting (R) and activated (A) 
states of the voltage-sensing J particles, as follows:

	 Z Z JZC CR CA= + , 	  (24a)

	 Z Z JDZO OR OA= + . 	  (24b)

The sub-schemes for the possible configurations of 
voltage-sensing L and J particles are given by the four 
(Ca2+-dependent) CPFs seen on the right side of Eqs. 24a 
and 24b, described in Table 5. Note that these second-
order CPFs, like their first-order counterparts ZC and ZO, 
share a single polynomial function, in this case: f2(K) = 
1 + K, where  = 1, C, E, or CE. By now, it should be ap-
parent that judiciously chosen ratios of these four CPFs 
will yield expectation values for C and/or E. For exam-
ple, Eq. 22b could be rewritten as ZOR/ZOR ≈ ZOA/ZOA = 
C . Alternatively, ZC and ZO could be parsed with re-
spect to the free (F) and bound (B) states of the K parti-
cle, yielding a second set of second-order CPFs of the form 
g2(J ) = 1 + J, where  = 1, D, E, or DE (see Table 6). 
Rephrasing Eq. 22c, we obtain ZOF/ZOF ≈ ZOB/ZOB = DV. 
Either parsing route, if connected to a suitable work 

Ta b le   5

Second-order CPFs (Scheme 2): V sensors L and J

LPF CPF

ZL()J() = ZCR
4 ZCR = (1 + K)

ZL(+)J() = LZOR
4 ZOR = (1 + KC)

ZL()J(+) = J 4ZCA
4 ZCA = (1 + KE)

ZL(+)J(+) = L(JD)4ZOA
4 ZOA = (1 + KCE)

Ta b le   6

Alternative second-order CPFs (Scheme 2): L and K

LPF CPF

ZL()K() = ZCF
4 ZCF = (1 + J)

ZL(+)K() = LZOF
4 ZOF = (1 + JD)

ZL()K(+) = K4ZCB
4 ZCB = (1 + JE)

ZL(+)K(+) = L(KC)4ZOB
4 ZOB = (1 + JDE)

Ta b le   7

Third-order CPFs (Scheme 2): Fully parsed

LPF CPF

ZL()J()K() = ZCRF
4 ZCRF = 1

ZL(+)J()K() = LZORF
4 ZORF = 1

ZL()J(+)K() = J 4ZCAF
4 ZCAF = 1

ZL()J()K(+) = K4ZCRB
4 ZCRB = 1

ZL(+)J(+)K() = L( JD)4ZOAF
4 ZOAF = 1

ZL(+)J()K(+) = L(KC)4ZORB
4 ZORB = 1

ZL()J(+)K(+) = ( JKE)4ZCAB
4 ZCAB = 1

ZL(+)J(+)K(+) = L( JDKCE)4ZOAB
4 ZOAB = 1
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is equal to A1 + A3 in Fig. 3 A. The product qTV(+) is 
equal to A2 + A3. The difference between these two 
areas, (A2  A1), is the negative integral of the Q-V 
curve reflected across the q = V axis, which precisely 
describes Eq. 26.

Other useful geometric interpretations of WC[q] make 
use of the midpoint voltage VM, which was defined in in-
troductory remarks as Wq/qT = WC[q]/qT. From Eq. 26, 
we can write the following integral expression for VM:

	 V q Vd qM T

qT

= − ∫∆
∆

1

0

. 	  (28)

Chowdhury and Chanda (2012) recently introduced 
VM to the ion channel literature and named it the “me-
dian voltage of charge transfer” in reference to Wyman’s 
analogous use of the term “median ligand activity” 
(Wyman, 1964). The word “median” is an apt geometric 
descriptor, given that a vertical line passing through VM 
divides a Q-V plot into equal areas, even when normal-
ized to a maximum value of 1.0 (Fig. 3 B). The derivation 
is as follows: the area of the normalized Q-V in Fig. 3 B that 
corresponds to the shaded area in Fig. 3 A is A6 + A7  A4, 
which represents the value of Wq/qT and is therefore 
equal to VM. In turn, VM is also equal to the area A5 + A6. 
Equating the two areas, we obtain A7 = A4 + A5, which, as 
anticipated, divides the shaded regions in Fig. 3 B into 
equal parts. The fact that VM can be obtained from the 
unit-normalized Q-V curve is significant, because experi-
mentally it is difficult to measure the “single-channel” 
Q-V curve (Fig. 3 A), whose maximum value is qT = 
Qmax/N. Assuming that the value of qT is constant (later 
relaxed in the setting of variable interaction energies), 
one would need to measure it only once, using a so-
called “charge per channel” experiment (Aggarwal and 
MacKinnon, 1996; Seoh et al., 1996). The more easily 
acquired VM (which is independent of N) can be used to 
monitor the work function WC[q] = qTVM.

Despite the historical precedent for using the adjec-
tive “median” to describe VM—arguments for which in-
clude not only the “equal areas” property but also the 
fact that when V = VM, there are equal populations of 
channels in the least and most saturated charge states 
(see Chowdhury and Chanda, 2012)—work by Di Cera 
and Chen (1993), studying ligand-binding proteins, 
provides a compelling argument for the use of “mean” 
instead of “median.” Changing the integrand of Eq. 28 
from q to V, one obtains an alternative expression for 
VM as a function of the normalized electrical capaci-
tance fq = qT

1dq/dV (Fig. 3 C):

	 V Vf dVM q
V

V

=
−

+

∫
( )

( )

. 	  (29)

Di Cera and Chen (1993) point out that capacity func-
tions like fq are distributions whose moments—the first 

charge per channel (qT) and is equal to the thermody-
namic integral:

	 W Vd qC q

qT

[ ] .= − ∫
0

∆
	  (26)

Integrating Eq. 26 by parts, we obtain:

	 W q dV q VC q
V

V

T[ ] ( )

( )

( )

.= −
−

+

∫ +∆ 	  (27)

Although both terms in Eq. 27 diverge, WC[q] con-
verges to a finite value for well-behaved Q-V plots (i.e., 
those that approach a maximal value). This is easily 
seen in the graphical interpretation of Eq. 27 provided 
by Fig. 3 A. The integral term on the right side of Eq. 27 

Figure 3.  Q-V plot characteristics. (A) “Single-channel” Q-V plot 
obtained by dividing gating charge by N. The global work func-
tion WC[q] is equal to the difference between the lightly shaded and 
darkly shaded areas. (B) “Normalized” Q-V plot obtained from di-
viding by Qmax. The characteristic voltage VM divides the Q-V into 
equal shaded areas. (C) The electrical capacity distribution: fq = 
qT

1dq/dV. The first moment of the distribution is equal to VM.
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42 Linkage analysis in ion channels

The LPFs ZV() and ZV(+) in Eq. 32 correspond to sub-
schemes of Scheme 2 derived from extreme potentials 
V() and V(+). ZV() describes J and L particles as fixed in 
their resting positions, whereas K particles are allowed to 
bind Ca2+, and ZV(+) is analogous except with J and L 
fixed in their activated positions. The LPFs contain CPFs 
ZCR and ZOA, as follows: ZV() = ZCR

4 and ZV(+) = LV(+)( JV(+)D
ZOA)4. Recalling that L = kTlnL and J = kT lnJ, 
we insert the above expressions for ZV() and ZV(+) into 
Eq. 32, yielding:

	 W kT
Z
Z

WC q
OA

CR
L V J V[ ] , ,ln ,=









 − − −= =4 4 40 0η η ∆ D

	  (33)

where we have eliminated the diverging second term in 
Eq. 32 by recognizing that, because qT = qL + 4q J, the 
electrical components of L,V(+) and J,V(+) exactly cancel 
qTV(+), leaving only the charge-neutral potentials L,V=0 = 
GL  nL and J,V=0 = GJ  nJ. In unusual cases 
where obligatory calcium binding is associated with the 
activation of L and/or J particles, one would observe 
sloping asymptotes (m = nL + 4nJ) when plotting WC[q] 
versus , but for standard models of BK, the global link-
age plot has horizontal asymptotes.

The sigmoidal component of WC[q] versus  in 
Scheme 2 possesses the vertical span:

	 µ µ∆ ∆ ∆ ∆ ∆W q V W WC q T M[ ] = − = − +4( ).C E
	  (34)

The right side of Eq. 34 follows immediately from Eq. 33 
by substituting the expression (1 + CEK)/(1 + K) for 
ZOA/ZCR, and recognizing that this is equal to the expecta-
tion value CE K. The outcome of Eq. 34 solves the earlier 
problem of not being able to measure E solely through 
conductance Hill analysis, because now the value of 4WE 
can be obtained by subtracting Eq. 34 from Eq. 23a.

Limited global analysis
It is reasonable to enquire, given the outcome of Eq. 34, 
whether a limited version of global analysis can be used 
to measure WE independently of WC. The answer is a 
qualified yes, provided one can maintain the pore in ei-
ther the closed (L() = C) or open (L(+) = O) state, thereby 
eliminating its influence on J–K linkage. With the pore 
locked in this manner, Eq. 34 can be rewritten:

	 ∆ ∆ ∆q V WJ M C O
µ

[ ] , or = − E
	  (35)

where VM(C) and VM(O) are mean activation potentials de-
rived from the limiting curves qC = kT(lnZL()/V) 
and qO = kT(lnZL(+)/V ). Using Eq. 12, these can be 
expanded to:
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	  (36a)
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	  (36b)

of which in an electrical system is VM, and which in a 
ligand-binding system is M—are intimately related to 
coefficients in the partition function.2 Adding the fact 
that, as we discuss next, there are several practical meth-
ods for measuring fq that make it easy to compute VM by 
using Eq. 29, there are compelling reasons to use “mean” 
in describing VM, although the historical use of “median” 
is certainly not wrong for the reasons cited. Here, we will 
refer to VM as the “mean voltage of activation.”

Of the methods used to acquire fq, probably the least 
efficient is measuring the slope of the normalized Q-V 
plot, generally obtained by integrating a series of gating 
currents obtained by stepping the voltage to different 
values. More direct methods of measuring fq are possi-
ble, including computing admittance for noise-driven 
gating currents at different holding potentials (Fernández 
et al., 1982), or measuring the gating current in re-
sponse to a slow voltage ramp (Sigg and Bezanilla, 
1997). The voltage-ramp method, which has the advan-
tage of generating the entire voltage dependence of fq 
in one sweep, is later demonstrated here through simu-
lation. We note that fq is proportional to the equilibrium 
variance of gating charge displacement and is therefore 
positive for all potentials (obviously a necessary prop-
erty for a distribution function).

A final relevant property of VM in systems that are both 
voltage and ligand sensitive is its rate of change with re-
spect to ligand activity. To derive this, we differentiate 
Eq. 28 with respect to  to obtain:
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, 	  (30)

where the Maxwell relation (V/)q = (n/q) is 
used. After evaluating the integral on the right, we have:

	 ∆ ∆q
dV
d

nT
M V

µ
= − , 	  (31)

where Vn is the change in the number of bound li-
gand n in response to a maximal change in voltage. 
Measuring the maximum value of dVM/d in BK chan-
nels, and knowing qT, one can obtain a lower bound (= 
Vnmax) for the total number of calcium-binding sites 
nT as an alternative to measuring the Hill coefficient.

A statistical mechanical formulation of WC[q]

Recalling that q = (/V ), and invoking the “bridge” 
equation (Eq. 4), we derive from Eq. 27 the following:

	 W kT
Z

Z
q VC q

V

V
T[ ]

( )

( )
( )ln .=









 −

+

−
+∆ 	  (32)

2The two cases (electrical and ligand-binding) are not exactly comparable. 
Although it is generally assumed that binding numbers n all have unity 
value, charge displacements q differ from particle to particle, adding an 
extra level of complexity to the coefficients of the partition function.
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channel, we would like to develop linkage relations that 
are not confined to specific models like Schemes 1 and 
2, but relate to more general schemes that can be con-
strained through experiment but are imprecise with re-
spect to internal processes. The partition function Z is a 
useful tool in implementing such “fuzzy” modeling. We 
have already demonstrated its utility in describing sim-
ple models. The exact partition function of a protein 
cannot be known exactly, but one can take advantage  
of the fact that Z is essentially a sum of probabilities 
and can be parsed into LPFs representing experimen-
tally distinguishable limiting states. In the case of the 
BK channel, the usual modeling constraints are as fol-
lows, supported by numerous studies (Cox et al., 1997; 
Rothberg and Magleby, 2000; Horrigan and Aldrich, 
2002; Xia et al., 2002):

(1) Voltage-sensing and calcium-sensing components of the 
channel are distinct. Specifically, the voltage sensor and 
pore are both voltage sensitive (qL, q J ≠ 0), whereas 
the calcium-binding domain demonstrates no voltage 
sensitivity (qK = 0), a distinction made in Table 2. This 
is a reasonable assumption. Both the pore and voltage 
sensor are located in the membrane, where charged 
residues are sensitive to the membrane electric field. 
The known calcium-binding elements in the gating ring 
are located in the cytoplasm, displaced internally from 
the membrane plane, and therefore calcium binding is 
not expected to traverse a significant portion of the 
membrane potential, minimizing its contribution to 
“gating charge.”

(2) Pore conductance is binary, transitioning stochastically 
between closed (C) and open (O) states. This implies that 
the pore can be modeled as a two-state process. The ex-
perimental proof in BK, as in other channels, is found 
in tracings of single-channel ionic currents, which un-
dergo very rapid transitions between nonconducting 
and conducting states. Very detailed analysis of single-
channel ionic currents cast doubt on the conjecture 
that pore conduction is a purely binary process, as sub-
conductance states in BK have been observed under 
various conditions (Stockbridge et al., 1991; Ferguson 
et al., 1993; Mistry and Garland, 1998; De Wet et al., 2006). 
The consequences of a nonbinary pore will be addressed 
later. For now, we accept the binary pore as a given.

(3) Channel subunits do not interact except through the 
pore. BK channels are composed of four identical sub-
units centrally connected to the pore domain. It is usu-
ally assumed that contact between subunits is minimal 
except where they interact with the pore. This is clearly 
plausible for the four voltage-sensor components, 
which are separated from each other in space (Wang 
and Sigworth, 2009). It is not as clear whether intersub-
unit interactions occur in the gating ring, where there 

In BK channels, it is possible to resolve qC and qO 
through kinetic means by taking advantage of the fact 
that pore opening is 100 times slower than voltage-
sensor activation (Horrigan and Aldrich, 2002).

Purely thermodynamic methods can also be used to 
determine qC and qO from measurements of G-V and 
Q-V plots, for example, through the relations qC = q + 
kTd ln(Gmax  G)/dV and qO = q + kTd lnG/dV. The 
expression kTd lnG/dV is known as the mean activation 
charge displacement qa, first used in reference to the 
Shaker K+ channel (Sigg and Bezanilla, 1997), where it 
appears to follow the course of an “upside-down” Q-V 
curve. In BK, measurements of qa (Horrigan and 
Aldrich, 2002) are consistent with an allosterically regu-
lated pore particle, as its value at very negative voltages 
(the so-called “limiting slope”) decreases to a fairly small 
value (0.3 eo), compatible with that of qL. In contrast, 
the limiting slope observed in Shaker is substantially 
larger (12–13 eo; see Islas and Sigworth, 1999)—equal in 
value to qT measured from “charge per channel” experi-
ments (Aggarwal and MacKinnon, 1996; Seoh et al., 
1996)—consistent with a single open state at the end of a 
voltage-dependent activation sequence.

A different but related method uses the slope of the 
conductance Hill to determine qC and qO. Starting 
from the identity WH[g] = kT ln(ZL(+)/ZL()), we derive 
dWH[g]/dV = qO  qC (see also Conti, 1986), and rec-
ognizing that q = (1  PO)qC + POqO, we obtain qC = 
q  (G/Gmax)dWH[g]/dV and qO = q + (1  
G/Gmax)dWH[g]/dV. With both of these methods, as with 
the earlier use of Eqs. 23b and 34, a combination of 
global (Q-V) and local (G-V) techniques is necessary to 
measure WE for the simple reason that the J–K interac-
tion does not directly involve the pore.

Model-independent application of linkage analysis
Linkage plots yield model-independent information 
about channel gating, starting with whether the chan-
nel is part of an “accessible” allosteric network. We have 
just discussed how qa experiments support the notion 
of obligatory voltage-sensor activation before the open-
ing transition in Kv channels like Shaker. This would 
constitute a “tight” allosteric network in which the cou-
pling energy (which could be negative, as from steric 
interference) between voltage sensors and the pore is 
so large as to be immeasurable using electrophysiologi-
cal technique. Models of Shaker proposed to date do 
not predict conductance Hill plots that resemble Fig. 1; 
rather, one expects dramatically different slopes for neg-
ative (mV() = qT) and positive (mV(+) = qL) asymptotes.

In nonobligatory or accessible allosterism, work func-
tions related to identifiable structural components can 
be used to construct a network map consisting of parti-
cle displacements and interaction energies, with a  
view of understanding structure–function relationships 
from an energetic standpoint. Turning again to the BK 
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	 µ µ∆ ∆ ∆ ∆ ∆W q V W WC q T M[ ] = − = − +4( ),C E
	  (37c)

	 µ µ∆ ∆ ∆ ∆W q V WC q L M C O[ ] ±( ) = = −J E[ ] , or 4 	  (37d)

where we are reminded that the energies and displace-
ments of composite variables are the sums of their con-
stituents. One important point to recognize is that Eqs. 
37a–d, which are derived from work functions related 
to the G-V and Q-V curves, do not specify the value of 
the internal allosteric factors F and G. To probe the in-
ner operation of either the gating ring or voltage sensor 
using the Hill analysis, one requires specific probes for 
individual particles within these domains.

This concludes the theoretical section of the paper.  
A summary of linkage analysis formulas used for the gen
eralized Scheme 3 and its derivatives with regard to G-V 
and Q-V curves is given in Table 8. To investigate the 
challenges in constructing and analyzing linkage plots, 
simulations of gating and ionic currents from a “com-
plex” 17-particle kinetic model (Scheme 4) were per-
formed under patch-clamp–like conditions, as described 
previously in Materials and methods. The thermody-
namics of Scheme 4 and the results of these simulations 
are described next.

Thermodynamics of the 17-particle model (Scheme 4)
The test model (Scheme 4) used in kinetic simulations is 
shown in Fig. 5. The scheme consists of a central pore 
(L) surrounded by four identical regulatory subunits, 
with each subunit containing two voltage-sensing parti-
cles ( J1 and J2) and two calcium-sensitive particles (K1 
and K2), for a total of 17 interacting gating particles. 

is extensive contact between calcium-binding domains 
from different subunits (Yuan et al., 2010). Neverthe-
less, experiments suggest that the gating ring is domi-
nated by intrasubunit, not intersubunit, interactions 
(Qian et al., 2006). This assumption simplifies Z by 
allowing the subunit CPF to be raised to the fourth 
power. On the other hand, the existence of intersub-
unit interactions can be easily dealt with by expanding 
Z with respect to powers of the equilibrium constant 
of the particle of interest, as demonstrated earlier  
for Scheme 1 and again later for the multi-subunit  
pore (Scheme 5).

(4) Allosteric energies are constant, independent of voltage 
or calcium concentration. This last point is the weakest in 
terms of experimental evidence supporting it. There is 
no a priori reason why allosteric interactions should be 
independent of environmental influence. It has been 
postulated, for example, that interactions between volt-
age-sensing particles in the voltage sensor might also be 
voltage sensitive (Pantazis et al., 2010), and interactions 
between the gating ring and the voltage sensor appear 
to be mediated by internal Mg2+ (Shi et al., 2002; Yang 
et al., 2008). The existence of environmentally sensi-
tive allosteric factors distorts linkage relations, as dis-
cussed later.

These constraints on BK function can be translated 
into a general gating scheme (Scheme 3), of which the 
HA model (Scheme 2) is the simplest representation. 
Scheme 3 (illustrated by the cartoon in Fig. 4) possesses 
a binary pore, but the activation of other modality-spe-
cific domains may be more complex, characterized by 
composite equilibrium constants (J, K) and internal 
allosteric factors (F, G), as indicated by bold type. The 
linkage diagram of Scheme 3 in the parsing order 
L→J[G]→K[F] is given by:

	 	

(SCHEME 3)

The resemblance to Scheme 2 is obvious (in particu-
lar, Eq. 12 still applies), with the difference lying in the 
ambiguous nature of the number and configuration of 
particles within J[G] and K[F]. Nevertheless, it is possible 
to mathematically characterize Z and derive linkage re-
lationships. The details of these derivations will not be 
presented here but can be found in the supplemental 
text. Not surprisingly, the linkage equations arising 
from such a process are similar to those already derived 
for Schemes 1 and 2. They are given by:

	 µ ∆ ∆W WH g V[ ] ±( ) = −4 C , 	  (37a)

	 V
H g LW W∆ ∆( ) ,[ ] + = −±( )η µ 4 D

	  (37b)

Figure 4.  Generalized model of BK (Scheme 3). Edge-on mem-
brane view of one of four subunits shows the composite voltage 
sensor (J) and two-state pore (L) located within the membrane, 
whereas the composite Ca2+-binding (K) domain lies underneath. 
Other composite variables written in bold include the core (C, D, E) 
and internal (F, G) coupling factors.
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displacement q ranges from 0 to qT = qL + 4(qJ1 + qJ2) 
and is calculated from q = lqL + j1qJ1 + j2qJ 2, 
where the voltage-dependent particle activation curves 
are derived as follows:

	
l

Z
L

LZ
Z

O≡
∂
∂

=
ln
ln

,
4

	  (39a)

		   (39b)

 

		   (39c)

 
The average single-channel conductance is g = l gL.

Linkage analysis of simulated data using Scheme 4
Numerically computed equilibrium curves derived from 
Scheme 4 are shown in Figs. 6 (WH[g] “Hill” analysis) and 7 
(WC[q] “capacitance” analysis) for a range of [Ca2+]i values. 
Because Scheme 4 is a special case of the generalized 
Scheme 3, Eqs. 37a–d were used to numerically compute 
work functions. Monte Carlo–simulated currents were an-
alyzed according to the procedure described in Materials 
and methods. The simulation results are shown in  
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 .

The particles L, J2, K1, and K2 form an allosteric loop involv
ing the core interactions C, D, and E, and an internal in-
teraction F coupling K1 and K2. The J1 particle does not 
participate in the loop but influences its neighboring J2 
particle through an internal factor G. Although this scheme 
has not been experimentally validated, the particle arrange
ments and values of model parameters represent an 
amalgam of interactions previously proposed for BK (see 
references in Table 9). The linkage diagram for Scheme 
4 parsed in the order L→J2→( J1, K2)→K1 is given by:

	 	

(SCHEME 4)
from which we derive, as usual, the first-order equa-
tion Z = ZC

4 + LZO
4. Expressions for the CPFs ZC and ZO 

are as follows:

	 Z J Z J J G ZC CR CA= +( ) + +( ) 1 11 2 1 , 	  (38a)

	 Z J Z J D J G ZO OR OA= +( ) + +( )1 11 2 1 . 	  (38b)

The second-order CPFs ZCR, ZCA, ZOR, and ZOA are func-
tions of K1 and K2, given by ZCR = f2(K1, K2) = (1 + K1) + 
K2(1 + K1F), ZCA = f2(K1E, K2), ZOR = f2(K1, K2C), and ZOA = 
f2(K1E, K2C). The mean single-channel gating charge 
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Summary of thermodynamic methods applied to Schemes 2–5

Quantity Global analysis Local (Hill) analysis

Equilibrium curve Q-V (Q = Nq) G-V (G = Ng)

Canonical relation q
V

= −
∂
∂
Φ G G kT

Z

L

/
ln

max = −
∂
∂η a

“Bridge” equation  = kTlnZ L (= GL  qLV) = kTlnLb

Work function W V
d q

dV
dVC q

V

V

[ ]

( )

( )

= −
−

+

∫ W kT
G

G GH g[ ]
max

=
−











CPF ratios
Z
Z

OA

CR  = CE

Z
Z

O

C V











±( ) = C , 

Z

Z

O

C









±µ( ) = DV
c

Allosteric energies WC[q] = 4(WC + WE) = qT VM

WH[g]V(±) = 4WC 
V(WH[g] + L)(±) = 4WD

d

Some of the local equations for Scheme 5 differ from those of the other schemes as a result of the tetrameric pore structure. The following equations 
become relevant at extreme voltages, where Scheme 5 deviates from Scheme 4 (Fig. 12, C and D):

aCanonical relation: G G kT
Z

P

/
ln

.max = −
∂
∂η 

b“Bridge” equation: P (= L/4) = kTlnP.
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dAllosteric energies: WH[g]V(±) = WC and V(WH[g] + P)(±) = (WD + WB3 + WB4) + kTln[16x1(1x3)].
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mean G = NgLPO and variance VarG = NgLPO(1  PO) 
through the relation S/N = G/VarG

1/2, which works out 
to (NG/(Gmax  G))1/2. For S/N > 1, many of the lower 
asymptotic points kTlnG were undefined, because fluc-
tuations from the mean resulted in zero or even nega-
tive conductance (recall that the baseline or “floor” of 
the conductance was not known at the time of analysis 
and needed to be determined). This condition occurs 
when PO < 1/N. Therefore, with a cumulative N of 105 
(= 102 traces × 103 channels), noise effects became evi-
dent for PO ≤ 105, as seen in Fig. 9. It is remarkable that 
useful data could be derived for PO smaller than the pre-
dicted limit, down to PO = 108. The corresponding S/N 
ratio for the ceiling variable Gmax  G is (N(Gmax  
G)/G)1/2. Thus, for S/N ≈ 1, and cumulative n = 105, 
noise is increased when 1  PO = 1/N, corresponding to 
the upper limit of the plot in Fig. 9. Because the V() 
asymptote at high calcium concentration ((+)) occu
rred at intermediate values of PO, it was least affected by 
floor and ceiling effects and was used to fit the slope 
qL. The average fitted value of qL differed only slightly 
(+1.6%) from the given value of 0.3 eo. To determine 
interaction energies WC and WD, the relative heights 
of the other three “noisy” asymptotes were estimated 
through a process of alternatively fitting and manually 
adjusting the patch-specific variables (N, Veq, and gleak) so 

Figs. 8–10, with averaged parameters from 10 experiments 
listed in Table 9. Despite Nyquist and channel fluctuation 
noise, parameter estimates were fairly accurate, with a 
maximum error of 7.2% in the global parameter WC + 
WE, and three out of five averaged outcomes found to be 
statistically indistinguishable from their true values.

The “charge-per-channel” experiments (Fig. 8), in 
which N was estimated using ionic mean–variance analysis 
and Qmax was obtained by integrating gating currents, 
slightly underestimated the true value of qT = 2.62 eo by 
2.4%, a difference that is close to being statistically 
significant (P = 0.055).

The major challenge in generating WH[g] plots from 
simulated data (Fig. 9) was determining the “floor” and 
“ceiling” of the G-V curve. These limits depended on 
the randomized “patch-specific” values of N, Veq, and 
gleak. From the definition WH[g] = kT lnG  kT ln(Gmax  G), 
we recognize that the kTlnG defines the V() asymptote 
of WH[g] and is logarithmically sensitive to the floor, 
whereas kT ln(Gmax  G) defines the V(+) asymptote 
and is logarithmically sensitive to the ceiling. Although 
Nyquist noise may have played a small role in the uncer-
tainty of the G-V near the asymptotes, a far greater 
source of variation was open–closed fluctuations. The 
signal to noise (S/N) ratio for the floor variable G from 
N independently gating channels is derived from the 
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Scheme 4 parameters and fitted values from simulated data

Parameter Quantity Units Fit (mean ± SEM) p-value

qL 0.3a eo 0.305 ± 0.002 (n = 10) 0.063

GL 350a meV —

qJ
1

0.2b eo —

GJ
1

121c meV —

qJ
2

0.38d eo —

GJ
2

157c meV —

nK
1

1.0 — —

GK
1

79e meV —

nK
2

1.0 — —

GK
2

29e meV —

WC 53a meV 52.5 ± 0.7 (n = 10) 0.417

WD 81a meV 78.6 ± 0.7 (n = 10) 0.009

WC + WE 75a meV 69.6 ± 2.3 (n = 10) 0.044

WF 20e meV —

WG 195c meV —

L 0.1a kHz —

J 10a kHz —

K 10a kHz —

qT 2.62f eo 2.56 ± 0.03 (n = 10) 0.055

gL 50 pS —

aParameters adopted from Horrigan and Aldrich (2002).
bParameters adopted from Pantazis et al. (2010).
cParameters obtained from simultaneous fits to Q-V and G-V curves at [Ca2+] = 103 and 70 µM obtained from the HA model.
d = qJ  qJ1, where qJ = 0.58 eo is adopted from Horrigan and Aldrich (2002).
eParameters adopted from Sweet and Cox (2008).
fqT = qL + 4(qJ1 + qJ2).
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a noise level of 0.9 fA was reached, which improved sig-
nal recognition but did not alleviate the uncertainty in 
assigning proper baselines for integration, which had to 
be performed manually by eye. In the final analysis, 
however, a significant source of error in WC[q] analysis 
was not random but systematic, caused by a “lag” in the 
gating current from failing to maintain equilibrium 
near the steep portion of the Q-V curve, where the 
channel responds mostly slowly. This effect was more 
pronounced in high than in low [Ca2+]i. It was quanti-
fied by simulating the model in the absence of Nyquist 
noise, and the VVM of the now smooth Q-V curves 
(shown in Fig. 10 as thick lines) differed from the true 
value by 6.9%. Thus, the lag effect, when added to the 
small inaccuracies in qT measurements, accounted for 
most of the error in WC + WE.

Hill analysis performed on markers of  
voltage- and Ca2+-sensor activation
Hill analysis is not limited to G-V plots, provided that 
markers of activation can be obtained for particles other 
than the pore. Energy Hill plots for each of the four 
subparticles (J1, J2, K1, and K2) in Scheme 4 are shown in 

that they visually paralleled the (V(), (+)) asymptote. 
The value of WC (averaged from measurements taken 
at V() and V(+)) was 1.3% less than the given value of 
53 meV. Measuring WD was slightly less precise, with 
a 3.0% underestimation of the given value of 81 mV 
(P = 0.009), decreasing to only 0.7% if the noisier 
“zero” Ca2+ plot was excluded from the analysis.

In WC[q] experiments (Fig. 10), the average value of the 
outcome parameter WC + WE differed significantly 
from the given value of 75 meV by 7.2% (P = 0.044). 
Nyquist noise was a major factor, with simulated gating 
currents barely exceeding 15 fA compared with the 
root-mean-square noise level of 29 fA at 1 kHz. After 
signal averaging 100 traces and post-filtering to 0.1 kHz, 

Figure 6.  Ca2+ dependence of the conductance Hill energy in 
Scheme 4. WH[g] versus V is plotted for [Ca2+]i = 103 to 103 µM 
(step size = 1.59×). The dashed lines are the four (V,) asymptotes, 
given by WH[g]V()() = GL + qLV, WH[g]V(+)() = (GL + 4WD) 
+ qLV, WH[g]V()(+) = (GL + 4WC) + qLV, and WH[g]V(+)(+) = 
(GL + 4WC + 4WD) + qLV. The height differences between 
the asymptotes are 4WC (short solid arrows) and 4WD (lon-
ger dotted arrows).

Figure 7.  Ca2+ dependence of the electrical capacitance energy 
in Scheme 4. (A) q-V series for [Ca2+]i = 103 to 103 µM (step size = 
1.59×). The area of the dashed rectangle is equal to qT VM = 
4(WC + WE), also given by the area of the shaded region. 
(B) Semilog plot of WC[q] versus [Ca2+]i derived from equilibrium 
curves in A. The lower and upper limits of the curve are given by 
WC[q]() = GL  4(GJ1 + GJ2 + WD + WG) and WC[q](+) = 
GL  4(GJ1 + GJ2 + WC + WD + WE + WG).

Figure 5.  The 17-particle model (Scheme 4).
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48 Linkage analysis in ion channels

through strong homologous interactions, activate in 
near concerted fashion, allowing only brief visits  
to intermediate conducting states. A modification of 
Scheme 4 that includes such a tetrameric pore is shown 
in Fig. 12 A (Scheme 5).

As was done previously for K particles in Scheme 1, 
multiplicative constants B1, B2, B3, and B4, in this case 
representing nearest-neighbor P-particle interactions 
(but excluding trans-interactions), were used to modify 
the equilibrium constants P of successively activating 
pore particles. The intrinsic P particle transition energy 
GP = GL/4 was additionally offset by the amount 
WB = (WB1 + WB2 + WB3 + WB4)/4 to maintain 
the original free energy change GL between closed 
and open states. Under these conditions, of the six con-
figurational pore states (which include the cis- and 
trans-configurations of the p = 2 state), only the closed 
and open states experience a match between the num-
ber of interactions and activated particles (Fig. 12 B). 
Intermediate (and presumably subconducting) states 
are characterized by an imbalance of these numbers, 
leading to increased state energies (on the order of 
WB and 2WB; Fig. 12 B) and brief occupancy 
times. These attributes of the interacting tetrameric 
pore are found in the Scheme 5 partition function:

 
		   (40)

where ZC and ZO remain unchanged from Scheme 4 
(Eq. 38). It is readily apparent that for large values of  
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Fig. 11. The work functions for the Ca2+-sensitive K par-
ticles are plotted on  and log[Ca2+]i axes, replicating 
traditional ligand-binding curves. The displacements 
and interaction energies derived from these linkage 
plots are easily matched to the highlighted parameters 
shown in the cartoons (Fig. 11). The rise of the sigmoi-
dal components with respect to the slope of the asymp-
totes varied among particles, with J1 providing the best 
resolution because of its small intrinsic charge and rela-
tively large interaction energy with J2. From an experimen-
tal standpoint, the Hill plot for J2 would be considered 
the most problematic among the voltage-sensing parti-
cles, because limiting behavior was not reached even for 
very large values of V, leading to the risk of measuring 
incorrect slopes and interaction energies from “false” 
asymptotes. The Hill plots for the K particles (Fig. 11,  
C and D) are notable in demonstrating net negative dis-
placements in the sigmoidal component stemming from 
negative cooperativity between K1 and K2 (WF > 0).

Adding a tetrameric pore: The 20-particle  
model (Scheme 5)
We now reexamine the earlier constraints (1–4) on BK 
gating by relaxing them in Scheme 4. Constraint 2  
posited that pore activation is binary, based on single-
channel recordings. However, this is inconsistent with 
the tetrameric structure of the pore and does little to 
explain the presence of observed short-lived subcon-
ductance events. A more compelling hypothesis has 
been put forward (Chapman et al., 1997; Zheng and 
Sigworth, 1997), which postulates that the four P subunits, 

Figure 8.  Charge-per-channel analysis of Monte Carlo–simu-
lated data from Scheme 4. (A) Gating current transient from n = 
1,027 channels averaged over 100 traces for a test (ON) pulse 
from 300 to 300 mV. Simulation conditions were fs = 50 kHz, 
fc = 10 kHz, and [Ca2+]i = 1.0 µM. The integral of the gating cur-
rent, measured in femtocoulombs (fC), is superimposed onto the 
current. (B) Mean–variance plots of ionic currents for ON (300 
mV) and OFF (0 mV) pulses from a resting potential of 300 mV 
and Veq = 102 mV. The fitted curves (smooth parabolas) for this 
particular simulation yielded N(ON) = 1,106 and N(OFF) = 1,010.

Figure 9.  Local (Hill) analysis of Monte Carlo–simulated ionic 
currents for Scheme 4. WH[g], shown as dots (fs = 5 kHz and fc = 1 
kHz, post-filtered to 0.1 kHz), was plotted for [Ca2+]i = 103 and 
103 µM. The data were taken from a single voltage-ramp experi-
ment and, for purposes of clarity, was decimated fivefold. The 
dashed curves are the true, numerically derived curves, with three 
of the four asymptotic lines shown (dotted lines). The vertical axis 
measures pore opening probability PO = G/Gmax.
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adjusted to maintain the desired equilibrium between 
closed and open states.

The effect of a strongly cooperative multi-subunit 
pore on work functions is shown in Fig. 12 C for WB = 
250 meV. Assuming equal increments of interaction 
energies and conductance increases in the pore activa-
tion sequence p = {1...4}, model parameters were deter-
mined as follows: Bp = B1/4, g = pgL/4, p = lnZ/lnP, 
and P = L /4. The results of global capacitance (WC[q]) 
analysis were practically unchanged from Scheme 4 be-
cause interactions between voltage- and Ca2+-sensitive 
particles are unaffected by B; therefore, WC[q] plots are 
not shown. However, dramatic decreases in the limiting 
slopes of WH[g] are demonstrated at very extreme volt-
ages (Fig. 12 D), whereas for a more attainable range 
(100 to 300 mV), the behavior was nearly in line with 
the usual (Scheme 4) predictions of a binary pore. The 
extreme V asymptotes of the Hill function WH[g] were 
equal to:

	 W W kT
Z
ZH g V B
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The rise V(WH[g]  P)(±) in asymptotes taken from 
the difference of Eqs. 41a and 41b equals (WD + 
2WB). The value of 2WB for the self-interacting 
term is consistent with the earlier statement that the 
self-interaction term is equal to the difference in coop-
erative energies of the first and last transitions. It is ap-
preciated that the difficulty in measuring WB in native 

B = exp(WB/kT), the partition function reverts back 
to Scheme 4 with its binary pore equilibrium constant  
L = P 4. Although we have assumed that P–P interactions 
favor opening transitions, we could have easily con-
structed a scheme where the activation pathway runs  
in reverse, with positive interactions favoring closing 
transitions, as long as the individual offset energies are 

Figure 10.  Global (capacitance) analysis of Monte Carlo–simu-
lated gating currents for Scheme 4. Integrated gating currents 
from 10 voltage-ramp experiments are shown as thin lines for 
[Ca2+]i = 103 and 103 µM, and normalized to a maximum value 
of qT = 2.56 eo (mean value derived from charge-per-channel 
simulations). The two thicker and smoother lines correspond to 
a single experiment performed in the absence of Nyquist noise. 
The numerically derived q-V curves (thick dashed lines) super-
imposed onto the data are normalized to the exact value of qT = 
2.62 eo. The area of the dashed rectangle is qT VM = 4(WC + 
WE). Simulation conditions were fs = 5 kHz and fc = 1 kHz.

Figure 11.  Hill analysis of J and K particles in Scheme 4. 
(A and B) J particles: solid lines, [Ca2+]i = 103 µM; dashed 
lines, [Ca2+]i = 103 µM. (C and D) K particles: solid lines, 
V = 103 mV; dashed lines, V = 103 mV. Asymptotes (dotted 
lines) were numerically derived. Cartoon representations 
of a single subunit highlighting relevant interactions are 
shown above each plot.
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50 Linkage analysis in ion channels

leading to a gating charge displacement of 2d eo. An-
other mechanism for dual sensitivity is the obligatory 
binding of Ca2+ during pore opening. As unlikely as this 
seems, Piskorowski and Aldrich (2002) have reported 
Ca2+ sensitivity in a BK channel whose gating ring had 
been removed, suggesting that removal of this bulky do-
main opened up alternative binding sites, perhaps even 
on the pore itself. A modification of Scheme 4 in which 
the pore partially binds Ca2+ upon opening was per-
formed by specifying the particle function L = GL + 
qLV  nL , where nL was chosen to be 0.4.3 This 
led to sloping asymptotes in the WC[q] versus  plot 
(Fig. 13 A). The energy Hill plot WH[g] demonstrated 
asymptotic slopes for both V and  axes (Fig. 13 B).

Modality-sensitive allosteric factors
Constraint 4 implied that allosteric energies are insensi-
tive to external forces. There is reason to believe that 
this might not be the case in BK. For example, Mg2+ 
appears to play a role in the interaction between gating 
ring and voltage sensor (Yang et al., 2008), raising the 
possibility that a small gating charge associated with 
Mg2+ displacement could affect the interaction energy 
WE. Another example is a small gating charge that 
appears to mediate the interaction (described by the in-
ternal coupling factor G in Scheme 4) between putative 
voltage-sensing particles, as inferred from fluorescence 
experiments (Pantazis et al., 2010). To incorporate volt-
age sensitivity into allosteric factors, an electrical term 
can be added to the interaction energy, for example 
WG = GG  qGV. A voltage-sensitive G = exp(GG/kT) 
would contribute an amount (lnZ/lnG)qG of gating 
charge to the Q-V curve. The effects on the Q-V and 
Hill plots from a small charge (qG = 0.2 eo) are shown 
in Fig. 14 (A and B). Because interactions between 

BK channels would be considerable, considering the 
large potentials needed to reach “true” asymptotic be-
havior and the need to resolve subconductance levels.

In Table 8, equations are provided for the general 
case, which is characterized by arbitrary values for the 
self-allosteric factors Bp and subconductance levels gp = 
xpgL. The loss of uniform incremental values in these pa-
rameters influences the measurement of self-interac-
tion energy, as demonstrated by the new linkage relation:

		   (42)
 

The second term on the right of Eq. 42 is an artifact 
of the nonuniform spacing of subconductance levels 
and vanishes if x1 = 0.25 and x3 = 0.75. In an apparent 
contradiction with the earlier assertion that the self- 
interaction energy is a function of the first and last steps 
of activation, Eq. 42 appears to depend on interaction 
energies from the last two steps. The contradiction re-
solves when one considers that, according to the parti-
tion function in Eq. 40, the first and last steps contribute 
the following energies: kT ln(1/B) and kT ln(B3/B1B2), 
the difference of which is kT ln(B3B4) = (WB3 + WB4). 
These expressions stem from the constraints imposed 
on self-interaction energies to achieve a “balanced” 
equilibrium between closed and open states.

Dual-modality particles
Constraint 1 for BK gating required all gating particles 
to be unimodal, i.e., each responsive to only one exter-
nal force. However, it is not hard to imagine circum-
stances in which this would be false. For example, a 
Ca2+-binding site might be displaced from the internal 
solution by a fraction d of the membrane potential, 

V
H g P D B BW W W W kT x x∆ ∆ ∆ ∆( ) ( ) [ ( )].[ ] + = − + + + −±( )η µ 3 4 1 3 ln 16 1

Figure 12.  The 20-particle model (Scheme 5). (A) Car-
toon of particles and interactions, including the tetrameric 
pore. (B) Energy landscape of the pore demonstrates three 
energy tiers separated by approximately WB. The lowest 
tiers are the closed and open states, shown symbolically as 
four squares (resting P particles) and four circles (activated 
P particles). The intermediate states, characterized by im-
balances in the number of activated P particles (energy = 
GP  WB) and P–P interactions (solid connector lines; 
energy = WB), represent the activation pathway for open-
ing. The highest energy state, the p = 2 trans-configuration, 
which has two activated P particles but no P–P interactions, 
would rarely be visited. (C) Conductance Hill plot for the 
tetrameric pore (solid lines, WB = 250 meV; dashed lines 
are the linkage curves for the two-state pore). (D) Same 
as in C but on an expanded V axis, with asymptotes drawn 
as thin dashed lines and interaction energies indicated by 
arrows. The dotted rectangle shows the boundaries of the 
plot in C.
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outside the models considered here. As demonstrated 
in a variation of Scheme 1 and in Scheme 5, the parti-
tion function Z for a channel possessing interacting sub-
units must be expanded in powers of the equilibrium 
constants of interacting particles. This presents no seri-
ous difficulties apart from increasing the complexity of 
Z compared with Eq. 12. As with independently acting 
regulatory domains, the primary effect of positively self-
interacting or intersubunit-interacting protomers in K+ 
channels is to strengthen allosteric coupling with the 
pore, thus steepening the G-V curve and shifting it to 
the left.

D I S C U S S I O N

Ion channels achieve specialization by acquiring sen-
sory units that activate in response to external forces 
(voltage, chemical potential, membrane tension, etc.). 
The ensuing displacements (charge, ligand binding, 
strain, etc.) may influence pore opening directly or 
through allosteric means. A thermodynamic descrip-
tion of a channel’s gating network would include, in ad-
dition to the spatial arrangement of regulatory particles, 
the values of displacements and interaction energies. 
The dual-regulated BK channel serves as an ideal system 
in which to study such energy/displacement networks, 
as it has a large configurational space that appears to  
be fully accessible to electrophysiological experimenta-
tion. Interactions between the pore and regulatory do-
mains in BK remain incompletely understood at a 
molecular level. The eventual elucidation of a mecha-
nistic description of gating will likely be achieved 
through careful probing of mutual interactions be-
tween specific residues using site-directed mutagenesis 
or other site-specific techniques. The interaction energies 
and displacements obtained from linkage analysis are use-
ful metrics by which such experimental interventions 

voltage- and Ca2+-sensitive components of the channel 
do not depend on internal energies within the voltage 
sensor, global analysis (Fig. 14 A) was unaffected except 
that qT grew larger by the amount 4qG. On the other 
hand, the V asymptotes in the local Hill plot for J2 di-
verged because of the addition of qG to the slope of the 
upper asymptote (Fig. 14 B). The interaction energy 
(WG + WD) could still theoretically be obtained by 
evaluating the height differences between asymptotes 
evaluated at V = 0.

In a second modification to Scheme 4, a charge qE = 
0.2 eo was assigned to the allosteric factor E, which, un-
like G, couples particles of different modalities (J2 and 
K1). Here, a more dramatic change to the Q-V curve oc-
curred (Fig. 13 C). At very low [Ca2+]i, where E ≈ 0, the 
channel behaved as in the original Scheme 4 with a 
well-defined VM(), despite the theoretical value of VM 
being shifted immeasurably far to the right on the V axis. 
With increasing [Ca2+]i, The E charge component (lnZ/
lnE)qE entered the Q-V plot from the right side, with 
VM eventually reaching a well-defined limiting value 
specified by VM(+). The global energy of interaction 
4(WC + WE) can be deduced from the area A2  A1 
shown in Fig. 14 C. From an experimental standpoint, 
obtaining the correct result would require that one rec-
ognize that qT, the total charge movement per channel, 
has become a function of [Ca2+]i as a result of linkage 
between J and K. Complex behavior was also demonstrated 
in the WH[j 2] plot (Fig. 14 D), which contained numer-
ous inflection points, generating “false” and ultimately 
diverging asymptotes across a wide range in voltage.

Intersubunit interactions
Finally, we briefly address constraint 3, which stated 
that subunit interactions between regulatory domains 
are forbidden except when acting through the pore. In 
light of generally extensive interactions between cyto-
plasmic domains found in many K+ channels, known to 
be important for channel assembly, as reviewed by 
Schwappach (2008), this may seem unrealistic. It is in-
teresting to note that voltage-sensor domains in Shaker 
appear to be anchored to neighboring subunits in an 
effort to increase the mechanical advantage for gating 
the pore (Long et al., 2005), an arrangement that falls 

Figure 13.  Linkage analysis of modified Scheme 
4 characterized by a dual-modality pore (qL = 
0.3 eo and nL = 0.4). (A) Plot of WC[q] versus , 
with asymptotes (dotted lines) mathematically 
the same as in Fig. 7 B except for the addition of 
the term nL . (B) Two-dimensional WH[g] plot 
for the dual-modality pore scheme. The slopes of 
the lower asymptotes (dashed lines) are given by 
qL (V axis) and nL ( axis).

3The notion of a fractional n is difficult to reconcile with the usual notion 
that a ligand site is either bound or not (n = 1). However, one can image 
instances in which a weakly or nonspecifically bound ligand is only partially 
taken out of solution, and the change in effort to maintain a constant chemi-
cal potential is therefore also partial. I am not aware of any studies that sup-
port partial binding, but in any case, the conclusions of this paper are 
unaffected if it can be universally proven that n = 1.
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gigaohm seal, is the current method of choice in mea-
suring BK channels because of its excellent perfor-
mance characteristics and experimental access to  
the internal solution. The use of slow voltage ramps in 
the Monte Carlo simulations performed here enabled 
“quasi-equilibrium” curves to be generated from single 
sweeps. Patch-clamp conditions were simulated by in-
corporating Nyquist noise, leak, and linear capacitance 
currents and randomly assigned values to patch-specific 
variables to mimic conditions encountered during analy
sis of real gating and ionic currents.

Sources of error in electrical capacitance  
energy measurements
The major source of error in WC[q] measured in voltage-
ramp simulations was systematic, caused by a Ca2+-
dependent “lag” in gating charge capacitance near the 
steep portion of the Q-V curve. In principle, this error 
could be cancelled by reversing the direction of the 
ramp and averaging the VM values for upsloping and 
downsloping ramp protocols. Nyquist noise also played 
a significant role, requiring signal averaging and post-
filtering of the simulated gating current. A faster ramp 
speed would have improved S/N but also increased  
systematic error. On the other hand, Horrigan and  
Aldrich (2002) achieved very good S/N in gating ca-
pacitance measurements through admittance analysis  
using a sinusoid stimulus superimposed on a 1-s voltage 
ramp. Their choice of excitation frequency = 0.868 kHz 
selectively activated the voltage sensor; however, a white-
noise excitation source could theoretically capture the 
full frequency response of the gating current (Fernández 
et al., 1982). The definitive solution to noisy data is  
to increase N with a greater channel density or by 
measuring larger areas of membrane, for example, 
through use of the Vaseline gap cut-open oocyte method 

can be interpreted. In studying ion channels, the princi-
pal sources of linkage information are the Q-V and G-V 
plots, representing normalized equilibrium curves for the 
gating charge q and the conductance g, respectively.

In this paper, equilibrium curves derived from gating 
models of BK were analyzed using two work functions: 
the electrical capacitance energy WC[q], a global param-
eter derived from the Q-V plot; and the Hill energy WH, 
which is a local parameter applied to specific markers of 
activation, for example the G-V curve in the case of the 
conductance Hill energy WH[g]. It has been emphasized 
that linkage analysis is model independent in the sense 
that only general assumptions regarding channel alloste-
rism are needed to interpret linkage plots. In practice, 
should the linkage functions behave unpredictably—
for example, if the limiting asymptotes of a work func-
tion diverge—then the underlying assumption regarding 
channel gating would need to be reexamined. Other-
wise, linkage plots are easy to interpret, with channel-
specific displacements and interaction energies equal 
to the slopes and height differences in V and  asymp-
totes. However, noisy data and other artifacts have a  
corrupting influence, and the reverse problem of con-
structing the best possible model given a set of possibly 
unreliable measurements and other constraints should 
be considered. Although such considerations are out-
side the scope of this paper, Monte Carlo simulations 
performed on Scheme 4 yielded some insight into the 
quality of the data that can be expected from patch-
clamp experiments and pointed to some potential ob-
stacles. These are discussed next.

Monte Carlo simulation of ramp experiments in the patch
The patch-clamp technique, in which a patch of mem-
brane containing one or many channels is electrically 
isolated using a polished glass pipette to establish a 

Figure 14.  Linkage analysis of modified Scheme 4 with 
modal-sensitive allosteric factors. (A) q-V plots for 
Scheme 4 modified by qG = 0.2 eo ([Ca2+]i = 103 to 103 µM; 
step size = 1.74×). The area of the dashed rectangle equals 
4(WC + WE). (B) Corresponding energy Hill plot for J2 
marker. Diverging V asymptotes are given by WH[j2]V() = 
GJ2 + kT ln(ZCA/ZCR) + qJ2V and WH[j2]V(+) = (GJ2 + 
WG) + kT ln(ZOA/ZOR) + (qJ2 + qG)V. These are further 
split by the lever operator  into narrowly spaced paral-
lel asymptotes whose height difference is WE. (C) q-V 
plots for Scheme 4 modified by qE = 0.2 eo ([Ca2+]i = 103 
to 103 µM; step size = 1.74×). The difference in the areas 
of the two dashed rectangles is A2  A1 = 4(WC + WE). 
(D) Corresponding energy Hill plot for J2 marker. The 
V asymptotes again diverge, given by WH[j2]V() = GJ2 + 
kT ln((1 + K2)/ZCR) + qJ2V and WH[j2]V(+) = (GJ2 + GK1 + 
WD + WE + WG) + kT ln((1 + K2CF)/ZOR) + (qJ2 + qG)V 
+ nK1.
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distortion caused by series resistance artifact and tran-
sient accumulation of K+ ions in the semi-confined 
space of the outer pore vestibule. A method to reduce 
current size without altering channel gating would be 
necessary to accurately measure the large PO (“ceiling”) 
asymptote of WH[g].

A second experimental issue is the large dynamic 
range of open probabilities necessary to generate both 
negative and positive asymptotes in the Hill plot. 
Scheme 4 simulations required measuring open proba-
bilities as low as 107 (see Fig. 9), requiring at the very 
least a 24-bit A/D converter (107 ≈ 224). An elegant solu-
tion to this problem would be to construct a “Hill” cir-
cuit, which generates analogue signals for G and Gmax  
G by adjusting the driving force V  Veq and baseline Ibase 
of the ionic current, and then applies a logarithmic 
converter before digitizing. Using a repeating ramp 
protocol, manual or semi-automated adjustment of in-
puts Gmax, Veq, and Ibase could be performed to achieve an 
optimal shape of the Hill curve in real time.

A third problem is experimental noise, which in ionic 
current simulations primarily consisted of channel-re-
lated gating fluctuations rather than Nyquist noise. As 
discussed earlier, the estimated cumulative number of 
channels N needed to generate a good quality Hill plot 
is the inverse of the larger value of PO and 1  PO. To use 
markers of activation other than the G-V curve (for ex-
ample, from fluorescent labels), one would need to 
consider the S/N characteristics of the signal. Ionic cur-
rents related to voltage-sensor activation that could the-
oretically be used as “markers” in specially engineered ion 
channels are the “proton pore” current (Starace and 
Bezanilla, 2004) and “omega” current (Tombola et al., 2005).

Relation to the HA model
In their comprehensive study of BK gating, Horrigan 
and Aldrich (2002) used a mixture of kinetic and ther-
modynamic methods to constrain values of gating pa-
rameters in the context of their nine-particle model. 
The HA model is arguably the first complete descrip-
tion of BK gating and provides the basis for the schemes 
considered here. Most of the values used in Scheme 4 
were derived from the results of this study (Table 9). 
Many of their methods can also be framed within the 
broader context of linkage analysis.

From measurements of the Ca2+ dependence of PO at 
very negative potentials, the authors computed a vari-
able they called RO that is equivalent to ZOR/ZCR, and by 
plotting logRO versus [Ca2+] obtained logC. They also 
obtained the intrinsic pore charge qL by fitting the 
negative asymptote of log(PO). They recognized the im-
portance of using log(PO), or the floor of the G-V curve, 
to adequately constrain parameters at negative poten-
tials far from the midpoint of activation, although their 
method for estimating PO (using an all-points histogram 
of single-channel currents to measure NPO and dividing 

(Taglialatela et al., 1992), which can record >106 channels 
and also allows internal perfusion.

When performing global analysis from Q-V curves, 
care should be taken to rule out sloping asymptotes 
(observable as VM “creep”) and an environmental de-
pendence in the value of Qmax, as these complicate the 
analysis (see Figs. 13 and 14). Another potential compli-
cation is from nonlinear capacity effects. The ramp elic-
its a linear membrane capacitance current (= mCpatch) 
that was assumed to be constant. In reality, there may  
be electrostriction effects, or an even more insidious  
process: a small but broad “fast” capacitance linked to 
individual U-shaped–state potentials in a channel’s con-
formational energy landscape. In the Shaker channel, 
the fast capacitance decreases by an amount of 5 × 
104 eo/mV per subunit as the channel transitions from 
the most closed state to the open state (Sigg et al., 
2003). This amounts to only 0.4% of the peak capaci-
tance in Shaker and 5% of the peak capacitance pre-
dicted by Scheme 4 using parameters in Table 9. It is 
unknown whether a similar fast capacitance is measur-
able in BK. If there were a substantial state dependence 
in the electrical capacitance, say in the form of a differ-
ence CJ = qJ/V between the resting and activated 
states of the voltage-sensing J particle, one would need 
to modify the particle potential of J, which by integrat-
ing qJ (assuming CJ is voltage independent) would 
obtain a second-order voltage term: J = GJ  qoJV  
CJ(V  Vo)V. This could theoretically have an effect 
on baselines and limits of integration when analyzing 
ramp-generated Cq to measure VM. Later, we’ll see how 
a strong state dependence in heat capacity can dramati-
cally influence linkage relations in temperature-activated 
TRP channels (Clapham and Miller, 2011).

Measuring WC[q] requires knowing the value of total 
gating charge, the so called “charge-per-channel” qT = 
Qmax/N. Although a model-dependent estimate of qT = 
2.62 eo has been determined for BK (Horrigan and 
Aldrich, 2002), an independent determination of qT 
using charge-per-channel methods has yet to be pub-
lished. Such experiments (see Fig. 8) require that one 
measure gating currents and N in the same preparation 
(Aggarwal and MacKinnon, 1996; Seoh et al., 1996).

Sources of error in conductance Hill energy measurements
The critical step in WH[g] analysis of simulated ionic cur-
rent data was establishing the “floor” and “ceiling” base-
lines for the G-V plot, as Hill asymptotes are extremely 
sensitive to these values. The simulations demonstrated 
that reliable measurements could be obtained somewhat 
beyond the theoretical limits of PO < 1/N for the floor 
asymptote, and 1  PO = 1/N for the ceiling asymptote.

Several problems predictably arise when considering 
experimental limitations. One is that the size of BK  
currents—in the simulations they exceeded 12 nA for a 
50-pS pore conductance—would create serious signal 
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provide very good fits to experimental data. Confusion 
arises from different uses of the “Hill” label. The tradi-
tional Hill plot is defined as ln(M/(Mmax  M)), where 
M is a marker of activation for the principal protomer 
(in titration experiments, for which Hill analysis was de-
veloped, M is the binding curve). The source of differ-
ences lies in the models to which Hill analysis is applied. 
In the present work, allosteric interaction between the 
principal component (usually the pore, marked by the 
conductance G) and other particles generates a sigmoi-
dal curve whose linear asymptotes reflect the strength 
of the interaction. A nearly identical treatment is the  
-analysis of Chowdhury and Chanda (2010), which was 
proposed as a means of interpreting mutational effects 
on local interactions between the principal particle and 
its neighbors.

On the other hand, Hill (1910) derived an empirical 
formula to describe ligand titration curves based on the 
partition function Z = 1 + Kn, which, interpreted in 
molecular terms, implies concerted movement among 
n protomers. This is an idealized construct that occasion-
ally approaches reality in the setting of strong homolo-
gous interactions (for example, open–closed transitions 
in the tetrameric ion channel pore, as explained ear-
lier). In the language of this paper, the empirical for-
mula describes a single particle X whose equilibrium 
constant is X = Kn and whose activation curve is there-
fore Kn/(1 + Kn), known as the “Hill equation.” The 
difficulty arises when the empirical formula is applied 
to proteins whose behaviors do not fit the definition of 
a “single-particle” system. Nevertheless, this is com-
monly done in fits of binding curves from allosteric  

by N ≈ Gmax/gL) did not lend itself to accurate measure-
ments at the ceiling of the G-V curve (a requirement for 
defining the positive V asymptote of the conductance 
Hill plot). They cited this as a difficulty in estimating 
the value of D, defined in linkage terms as the height 
difference in the two asymptotes of WH[g] versus V. In-
stead, an alternative method for estimating D using the 
product of qJ and the midpoint voltages of qC and qO 
was proposed specifically for the HA model (Scheme 2). 
The proof for the more general Scheme 3 goes as fol-
lows: recognizing that qO  qC = dWH[L]/dV, we inte-
grate both sides with respect to V to obtain ∫qOdV  
∫qCdV = VWH[g]. Separating qO into its baseline (qL) 
and variable (qO  qL) components, we subtract VL = 
qL(V(+)  V()) from both sides of the equation and 
integrate the remaining expression on the left side by 
parts, obtaining qJ(VM(O)  VM(C)) = V(WH[g] + L). 
VM(C) and VM(O) are the first moments of normalized ca-
pacities derived from qC and qO  qL, respectively. 
Recalling that V(WH[g] + L) = 4kTln(D), and defin-
ing LVM = VM(O)  VM(C), we obtain the desired result: 
qJ LVM = 4WD (see Fig. 15). Assuming one can mea-
sure both qC and qO—for example, by integrating the 
fast component of gating charge after prepulsing to ei-
ther V() or V(+)—then WD could be calculated without 
resorting to logarithmic (Hill) analysis of the G-V curve. 
The value of qJ, which is necessary to complete the cal-
culation, can theoretically be obtained by subtracting 
qL from qT, both of which can be independently mea-
sured. The authors acquired qO indirectly through the 
relation qO = qa + q, where qa = kTd lnG/dV is sensi-
tive to the floor of the G-V curve. They acknowledged 
that error from this measurement could account for the 
13% difference in log(D) compared with the fitted 
value from log(PO)-V curves.

The allosteric factor E was estimated in similar fash-
ion by measuring shifts in qC and qO in response to 
saturating changes in [Ca2+]i. Because the influence of 
pore activation has been removed from both qC and 
qO, the two curves can be described by a Boltzmann 
function in the HA model (and very nearly so in Scheme 
4 because of the very large negative value of WG cou-
pling the two J particles; see Fig. 15). The success of the 
HA model in fitting ionic and gating current data, par-
ticularly at voltages where PO was very low (107), is 
reassuring for the eventual success of linkage methods 
described here. It will be of interest to see if, despite its 
potential limitations, the slow voltage ramp can over-
come the inability of the NPO histogram to generate 
positive voltage (“ceiling”) asymptotes in the conduc-
tance Hill plot.

Deconstructing other thermodynamic methods of analysis
Methods for dealing with equilibrium plots are preva-
lent in the ion channel literature. The tools used most 
often are the Hill and Boltzmann equations, which can 

Figure 15.  Global analysis applied to limiting conductance states 
in Scheme 4. Plots of qC and qO are shown for [Ca2+]i = 103 µM 
(solid curves) and 103 µM (dashed curves). The expression for 
closed- and open-state VM (vertical dashed lines) are given by VM(C) = 
[GJ1 + GJ2 + WG  kT ln(ZCA/ZCR)]/(qJ1 + qJ2) and VM(O) = 
[GJ1 + GJ2 + WG + WD  kTln(ZOA/ZOR)]/(qJ1 + qJ2). The 
area of the parallelogram is given by 4(qJ1 + qJ2)LVM() = 
4WD. The area of the smaller rectangle is given by 4(qJ1 + 
qJ2) VM(O) = 4WE.
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through kT∫V(d2lnG/dV2)dV. This contrasts with the 
traditional Boltzmann method of analysis, where qBV1/2 
obtained by Boltzmann fitting is numerically equal to 
kT ln(B/(1  B))V=0. Boltzmann fits are not typically 
weighted toward the tail regions but, as implied earlier, 
are judged by their ability to determine the position 
and steepness of the more accessible midpoint part  
of the curve. Despite its significant limitations, the 
Boltzmann technique been shown to be useful in study-
ing double mutant cycles involving pore residues of 
late-activating Kv channels (Zandany et al., 2008), for 
which qBV1/2 was found to be proportional to the true 
perturbation energy of a pore mutation over a large 
range in L (Yifrach and MacKinnon, 2002).

Finally, just as it is incorrect to apply local Hill analysis 
to Q-V curves, it is equally wrong, though tempting, to 
apply global analysis to G-V curves by proposing a new 
linkage function WC[g] = qL∫VdPO = qLVM[g], where VM[g] = 
∫VfgdV and fg = dPO/dV. The variable VM[g] could be re-
ferred to as the “mean” activation voltage of conduc-
tion, and fg would be the “conductance capacitance,” 
even though this is a nonsensical term. It is nevertheless 
reasonable, in the context of the BK channel, to en-
quire whether qL

VM[g], as a kind of “global analysis” 
of the local K–L interaction, is equal to 4WC. This 
attempt at deriving the strength of K–L linkage (or any 
perturbation affecting pore opening, say from a muta-
tion) by measuring shifts in VM[g] is flawed, because, 
unlike Q = NkT(lnZ/lnV), the conductance G = 
(lnZ/lnL)Gmax cannot be expressed as the voltage de-
rivative of Z (unless the pore is the only source of volt-
age dependence in the channel, as in Scheme 1). 
Attempts at deriving a G-V–based version of Eq. 32 by 
integrating the putative work function WC[g] by parts to 
obtain qL∫POdV  qLV(+), and then using the chain 
rule on the first term, as in:
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are problematic, particularly as the second term di-
verges for nL = 0. Recognizing that PO = kT(lnZ/L) 
points to the underlying problem, which is that L can-
not be varied independently of J because both particle 
potentials are functions of the control parameter V. We 
contrast this to the earlier correct method (using Q-V 
curves) of applying global capacitance analysis to the 
local J–K interaction to obtain WE (Eq. 35), in which 
the only other source of charge movement besides the  
J particle was eliminated by locking the pore in the 
closed or open position.

To summarize this section, we have excluded certain 
candidates from a list of valid work functions. These  

proteins, in which n is the fitted parameter, named nH 
or the “Hill coefficient,” and is used as an estimate for 
the minimum number of binding sites with respect to 
the principal ligand. The Hill equation, whose “Hill 
plot” is a straight line, effectively ignores the asymptotic 
behavior of Hill-transformed data and focuses on the 
maximum slope of the rapidly rising sigmoid-shaped re-
gion. In voltage-sensitive systems, such as the tetrameric 
pore described earlier, fits of Q-V curves to a Boltzmann 
function are actually fits to the Hill equation in disguise, 
in which the fitted Boltzmann charge qB = nHq, where 
q is the subunit gating charge displacement (Yifrach, 
2004). This is fairly imprecise because the Q-V curve is 
not meant to be analyzed through Hill transformation, 
as it generally receives contributions from more than 
one species of charged particles. For any distribution of 
charged particles more complex than a group of identi-
cal copies, The Q-V curve is more properly analyzed 
through global capacitance analysis using the midpoint 
parameter VM and the expression WC[q] = qTVM, as de-
scribed here and in Chowdhury and Chanda (2012).

Another conventional use of the “Boltzmann tech-
nique” is to detect curve shifts on the V axis in response 
to a perturbation. The “half-activation” voltage V1/2, as 
determined by the midpoint of a Boltzmann curve fit-
ted to the data, is sometimes used as a measure of the 
effort required to activate a channel. In analyzing Q-V 
curves, V1/2 is often used as a stand-in for the more cor-
rect VM. In a somewhat confusing twist of nomenclature, 
the V1/2 (the voltage for which the normalized Q-V is 
0.5) is equal to the median value of the capacitance dis-
tribution function fq (see accompanying article by 
Chowdhury and Chanda in this issue), whereas VM, 
which according to the convention established by 
Wyman should be called the “median” voltage of activa-
tion, is, as explained previously, its first moment, or 
mean value. In any case, V1/2 has no special thermody-
namic significance (in the sense of describing an en-
ergy or displacement), but it may coincide with VM for 
symmetrical Q-V plots.

Similarly, the product qBV1/2 derived from the G-V 
curve does not generally represent the work of opening 
the channel. Nevertheless, an exception of sorts can be 
made for Kv channels that possess a single late-activat-
ing open state, such as the well-characterized Shaker 
channel (Hoshi et al., 1994; Schoppa and Sigworth, 
1998). The reason is that, in these channels, the gating 
charge can be written as q = qT  qa, where qa = 
kTd lnG/dV is the mean activation charge displacement. 
Therefore, gating current measurements are not re-
quired to measure WC[q], because even qT can be ob-
tained from the limiting value of activation charge 
displacement: qT = qaV(). However, the logarithmic 
dependence of qa on G implies that the extreme edges 
or “tails” of the G-V are important in evaluating WC[q], 
which for a late-activating Kv channel is related to G 
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be 22 residues per subunit, a reasonable number for a 
protein domain.

Assuming that the T-sensor is allosterically linked to 
pore opening—perhaps through a model such as 
Scheme 1, or if including voltage sensors, Scheme 2—
then linkage techniques can be used to determine the 
strength of the coupling energy WC. The enthalpic 
component of WC can be measured from the rise of the 
sigmoidal component of the conductance Hill energy 
WH[g] plotted versus T. If there is also an entropic com-
ponent SC, it would show as a difference in the slopes 
of the positive and negative asymptotes equal to SC.

A distinguishing feature that sets a putative T-sensor 
apart from the “typical” voltage sensor is the substantial 
increase in heat capacitance of the denatured peptide 
compared with the native form. Recall from the earlier 
discussion that the state-dependent “fast” gating charge 
capacitance in Shaker is fairly insignificant compared 
with peak gating capacitance (0.4%), leading to only 
very subtle differences in the limiting slopes of the Q-V 
curve (Sigg et al., 2003). In contrast, the increase in heat 
capacitance Cp experienced by a protein upon denatur-
ing is typically about five times the value of SKo evaluated 
at To (Privalov and Khechinashvili, 1974), which would 
generate a measurable nonlinearity in the particle poten-
tial K of a T-sensor. The value of Cp appears to be fairly 
constant (Baldwin, 1986), leading to K = (Cp  SKo)
(T  To)  CpT ln(T/To), which is derived by integrating 
the thermodynamic identities Cp = (H/T)P = T(S/T)P 
around To = HKo/SKo, evaluated for both native and de-
natured states (Clapham and Miller, 2011).

As a consequence of the change in heat capacitance 
with melting, dramatic changes are seen in WH[g] related 
to the possibility that K crosses zero twice, theoretically 
generating two melting temperatures separated approxi-
mately by 2T = 2HKo/Cp, where T is the difference 
between the zero energy and zero entropy temperatures 
of the particle potential (Schellman, 1987; see derivation 
in the supplemental text). At the larger temperature To, 
the sensor would be hot-activated (negative slope for K), 
whereas at the lower temperature, it would be cold-acti-
vated, suggesting that both phenotypes could theoreti-
cally exist in the same channel (Clapham and Miller, 
2011). This is one of three explanations for phenotype 
reversal in domain-swapping experiments (Brauchi et al., 
2006) examined in the supplemental text as an illustra-
tion of how linkage analysis might discriminate between 
mechanisms for temperature gating. Because of the con-
ductance Hill plot’s logarithmic dependence on temper-
ature, it is well suited to detect subtle differences in the 
shapes of a G-T curve (particularly in the asymptotic  
regions), as compared with the traditional Boltzmann 
curve–fitting technique.

We neglect to discuss here the small but real voltage 
dependence of TRP gating, which is dealt with else-
where (Matta and Ahern, 2007; Latorre et al., 2009). 

include: (a) the product qBV1/2 derived from Boltzmann 
fits of both Q-V and G-V curves; (b) local (Hill) analysis 
of the Q-V curve; and (c) global (capacitance) analysis of 
the G-V curve. Exceptions for certain constrained sys-
tems are as noted above.

Other applications of linkage analysis:  
Temperature gating in TRP
Linkage analysis can in principle be applied to any ion 
channel with an “accessible”-state space, whose regula-
tory particles are energetically but not obligatorily cou-
pled. Gating schemes like those applied to BK in this 
paper can be generalized for use with other tetrameric 
channels simply by adjusting the system equation (Eq. 3) 
and particle potentials (Eq. 6) to reflect the mix of exter-
nal forces in play. Of special interest are temperature-
regulated channels, of which there are several varieties 
in the TRP family (Latorre et al., 2009). Although all 
proteins are to some degree temperature dependent as 
a consequence of being immersed in a heat bath, the 
ability to activate a channel within a very narrow range in 
temperature might require a special sensor. There is 
considerable uncertainty about where such a T-sensor 
might be located (Latorre et al., 2009; Yao et al., 2011; 
Cui et al., 2012), and whether there is more than one site 
of temperature sensitivity (Clapham and Miller, 2011). 
Assuming that a particular domain K can be identified as 
a T-sensor, its particle potential will have the minimum 
form: K = HK  SKT, where H and S are the activa-
tion enthalpy and entropy, respectively, of a mole of K 
particles, and its activation, or “melting,” curve will be 
given by K/(1 + K), where the equilibrium constant K = 
exp(K/RT). The midpoint of the curve, or “melting 
temperature,” is given by To = HK/SK. The steepness of 
the curve is determined by SK. Rearranging K to read
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we can estimate the proportional increase in the density 
of states, RΩ = exp(SK/R), required to “melt” the 
T-sensor (arbitrarily defined as a change in K/(1 + K) 
from 0.1 to 0.9) in response to a 10°C change in tempera-
ture, a sensitivity that is achievable by both “cold”-activated 
(Brauchi et al., 2004) and “hot”-activated (Yao et al., 
2010) TRP channels. This turns out to be 1055, which is 
equivalent to an entropy change of SK = 251 cal/mol/K. 
Such a large increase in the total configurational space 
(protein plus lipids plus solution) is most compatible 
with a denaturing process. It has been estimated that 
protein folding requires a configurational entropy 
change of about 2.9 cal/mol/K per residue (Pickett 
and Sternberg, 1993). This suggests that an 87-residue 
peptide, with a folding enthalpy HK = SKTo ≈ 74 
kcal/mol, could account for the steepness of the melting 
curve. When divided between four subunits, this would 
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there is the least “lag time” in ramp experiments). With 
some exceptions (Sigg et al., 2003; Chakrapani and  
Auerbach, 2005), kinetic analysis operates in the config-
urational “middle ground” where time constants are 
slowest. In this respect, the two approaches complement 
each other.

The number of independent variables in a thermo-
dynamic model is much smaller than in the corre-
sponding kinetic model. A simple voltage-dependent 
transition requires only two thermodynamic parame-
ters (G and q) but four kinetic parameters (, , 
q, and q). In allosteric systems, interaction ener-
gies are simply added to existing particle potentials, 
but in kinetic models, one must decide how to appor-
tion the interaction energy between the transition rate 
constants  and . This is typically done with respect to 
the position of the transition barrier in accordance 
with the theory of linear free energy relationships 
(Fersht et al., 1987; Auerbach, 2005). Using linear free 
energy relationship methods, it has been demon-
strated that the transition state of pore activation in 
Shaker closely resembles the open state (Azaria et al., 
2010). This suggests that the distribution of open 
times obtained from single-channel analysis could be 
wholly insensitive to allosteric perturbations of pore 
opening, which would instead be reflected in the more 
complex distribution of closed times. In linkage analy-
sis, the position of the transition state is irrelevant, 
provided adequate time is allowed for equilibration. 
To be fair, thermodynamic methods have, as discussed 
earlier, failed in the case of Shaker to measure the in-
teraction energy between pore and voltage sensor, as 
inferred, for example, from the inability to measure a 
reduction in qa at very negative membrane potentials 
(Islas and Sigworth, 1999). This outcome is not sur-
prising from a kinetic standpoint, as single-channel 
analysis of Shaker reveals only one open state and 
many closed states (Hoshi et al., 1994), implying, from 
an allosteric standpoint, that there are many open 
states in Shaker that are energetically inaccessible.

The preceding example stresses the importance of  
kinetic analysis in developing models of gating, par-
ticularly in channels like Shaker with a relatively  
constrained-state space. However, in channels with a 
larger-state space, linkage analysis can characterize gat-
ing networks in a manner that speaks to the energetic 
interactions between activated states (particles) in regu-
latory domains. This is substantively different from the 
traditional goal of kinetic modeling in ion channels, 
which is to construct a rate constant diagram of acces-
sible microscopic states. As new markers of activation 
are developed and refined, we may be poised to see an 
expansion of the application of rigorous thermody-
namic methods to study energy relationships between 
experimentally identified sites of environmental sensi-
tivity and the pore.

Needless to say, it is straightforward to insert a qV 
term in the particle potential of any regulatory particle, 
whether as part of a separate voltage sensor, such as the 
J particle in Schemes 2–5, or to infuse voltage sensitivity 
into the L and K particles.

Comparison of thermodynamic- and kinetic-based  
models and methods
Beginning with the well-known Hodgkin and Huxley 
equations describing action potentials in the squid  
giant axon (Hodgkin and Huxley, 1952), the interpreta-
tion of electrophysiological data has traditionally been 
done with the help of kinetic models. There are several 
reasons for this. The telegraph-like signal of single-
channel ionic recordings and the multi-exponential 
transients of gating currents invite a kinetic description. 
Some ion channels enter into inactivated states when 
subjected to extended membrane depolarization, and 
kinetic analysis can be used to differentiate between the 
different modes of gating. Finally, many channels appear 
to have a fairly small number of kinetically distinguishable 
states, making it easier to construct and choose among 
competing kinetic models.

On the other hand, there are advantages to consider-
ing thermodynamic models and the linkage techniques 
used to analyze them. The measured quantities in link-
age analysis are energy and displacement, which are 
used to characterize gating networks consisting of regu-
latory particles. Kinetic analysis, on the other hand, mea-
sures rate constants and displacements for a particular 
scheme of connected microscopic states. The partition 
function, which defines the thermodynamic properties of 
a channel, can often be expressed as a simple poly
nomial, even for complex allosteric models such as 
Schemes 4 and 5 that possess >103 states, whereas the 
equivalent kinetic models in these schemes are cumber-
some to create and analyze (consider the kinetic ver-
sion of Scheme 4 described in Materials and methods).

In thermodynamic modeling, coarse-graining the 
partition function to match the state space with the 
available data is straightforward; one simply sums over 
states that cannot be directly observed. The resulting 
CPFs play a central role in evaluating linkage functions, 
as discussed in this paper. In kinetic models, coarse-
graining is effectively performed by resolving time con-
stants of decay, which, because they are usually 
composed of multiple elementary processes, may be dif-
ficult to ascribe to a particular structure or mechanism 
of action. To do so requires at least one of the follow-
ing: (a) the observation of a kinetically distinct process 
through sheer luck; (b) the analysis of single-channel 
data or measuring fluctuations; or (c) recording under 
extreme conditions to achieve a “limiting rate.” The last 
is technically difficult to do in a step-pulse experiment 
but constitutes precisely the asymptotic region where 
linkage analysis operates (and where, coincidentally, 
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A P P E N D I X

Linkage diagrams
Linkage diagrams are graphical descriptions of allo
steric models developed for this paper and are to my 
knowledge not used elsewhere. They are meant to be 
read from left to right. The arrow symbol (→) repre-
sents a change in the equilibrium constant of one par-
ticle mediated by the activation of another particle, 
whose equilibrium constant is located above the arrow. 
Linkage diagrams have several useful features. First, the 
diagrams are precise (although not unique) representa-
tions of allosteric models, leaving no ambiguity as to the 
arrangement of particle interactions except when bold-
type variables are used to represent complex domains. 
Second, they are intimately connected to the partition 
function Z and in fact recapitulate the parsing proce-
dure used to write down Z in polynomial form, as deter-
mined by the set of rules outlined in Table 3. Third, 
they are easily generated using equation editors and 
take up little vertical space on the page.

In linkage notation, CPFs are represented by quanti-
ties within parentheses. The simplest CPF is that of a 
single particle K: (K)⇒1 + K. Multiplying the equilib-
rium constant K by the allosteric factor C yields (KC)⇒1 + 
KC. Mediating this change in K might be the particle L, 
leading to K

L
KC( ) → ( )⇒(1 + K) + L(1 + KC). If C = 1, 

implying independence between L and K, then the CPF 
becomes (1 + K)(1 + L), which can also be written in 
linkage notation as (K)(L). Using these rules and the 
linkage diagrams found in the text, the partition func-
tion for Scheme 1 is seen to be Z = (1 + K)4 + L(1 + KC)4, 
and for Scheme 2, it is Z = [(1 + K) + J(1 + KE)]4 + L[(1 + 
KC) + JD(1 + KCE)]4. Linkage diagrams are not unique. 
For example, K KC( ) →L   ( ) is equivalent to L LC( ) →K   ( ). 
For an allosteric model with m particle species, there 
are m! ways of drawing its linkage diagram and, by ex-
tension, m! ways of writing down its partition function. 
Complex domains consisting of more than one par-
ticle can be specified through the use of bold type. For 
example, a gating ring domain with multiple Ca2+ sen-
sors K1, K2, K3... can be represented by K[F], where F = 
{F1, F2, F3...} are internal allosteric factors. In cases where 
the internal allosteric network is not known, or the do-
main is otherwise complex, it is not possible to write down 
the corresponding CPF explicitly. However, the two  
extreme terms of the CPF may still be evaluated. For K[F], 
they are (K[F])() = 1 and (K[F])(+) = (K1K2K3...F1F2F3...). 
Because linkage analysis is chiefly concerned with these 
extreme values, the linkage diagram of complex systems 
remains a useful tool even if the partition function can-
not be fully defined.
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